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Abstract

Quantitative risk assessment for microplastics (MPs) is complicated by misalighments between
environmentally relevant particles and those used in toxicity studies. Previous approaches addressed this
using ecologically relevant metrics (ERMs) and species sensitivity distributions (SSDs), but did not
propagate uncertainty from particle-trait alignments or intraspecies variability. Here, we present a novel
probabilistic framework that propagates uncertainty through ERM alignments using Monte Carlo (MC)
simulation, paired with a modified probabilistic SSD model (PSSD++). Using high-quality data from the
updated Toxicity of Microplastics Explorer (TOMEx 2.0), we compared hazard thresholds derived by three
approaches: traditional SSD, MC+SSD, and PSSD++. PSSD++ consistently produced the most health-
protective median thresholds and lowest 5"-percentile values, which generally exhibited the widest
relative confidence intervals. MC+SSDs produced the narrowest uncertainty ranges. Uncertainty was
greater for food dilution than for tissue translocation, and greater for freshwater environments than
marine. Sensitivity analysis identified ERM-alignment parameters as the dominant drivers of threshold
variability, contributing up to two orders of magnitude difference. This framework emphasizes the
importance of propagating alignments uncertainty in MP risk assessments and highlights key research
needs, including improved models for tissue translocation and more representative environmental
particle characterizations.
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Highlights

Novel probabilistic ERA framework (PSSD++) for microplastics thresholds
Integrated Monte Carlo uncertainty propagation into ERM alignments
Applied framework to TOMEx 2.0, the largest MP toxicity database
PSSD++ yields more precautionary but more uncertain thresholds

ERM choice dominates threshold uncertainty across environment

Glossary

Acronyms

ABS — Acrylonitrile Butadiene Styrene

AlCc — Corrected Akaike Information Criterion: model selection metric adjusted for small
samples

DOM - Dissolved Organic Matter: natural organic compounds in water

ECx — Effect Concentration at x%: concentration causing x% effect (e.g., EC50)



ERA — Ecological Risk Assessment: framework for evaluating potential adverse effects of
contaminants

ERM - Ecologically Relevant Metric: particle- and species-specific measure of MP exposure
effects

HCx — Hazard Concentration for x% of species: e.g., HC5 = protective for 95% of species
HONEC - Highest Observed No Effect Concentration

ICx — Inhibitory Concentration at x%: concentration at which x% inhibition occurs

LCx — Lethal Concentration at x%: concentration causing x% mortality

LHS — Latin Hypercube Sampling: efficient parameter space sampling method

MC — Monte Carlo: repeated random sampling method for probabilistic simulation

MLE — Maximum Likelihood Estimation: statistical method for parameter estimation

MP — Microplastic: plastic particles <5 mm in size

NIAS — Non-Intentionally Added Substances: impurities/byproducts in plastics

NOEC — No Observed Effect Concentration: highest concentration at which no adverse effects
are observed

PA — Polyamide

PE — Polyethylene

PET — Polyethylene Terephthalate

PNEC - Predicted No Effect Concentration: threshold below which no adverse ecological effects
expected

PP — Polypropylene

PS — Polystyrene

PSSD — Probabilistic Species Sensitivity Distribution: variant of SSD preserving species-specific
variability

PSSD+ — Probabilistic Species Sensitivity Distribution Plus: adds uncertainty factors and chronic
NOECs

PSSD++ — Modified PSSD+ used in this study, incorporating uncertainties from ERM alignments
via MC simulations

PTFE — Polytetrafluoroethylene

PUR - Polyurethane

PVC - Polyvinyl Chloride

RCI — Relative Confidence Interval: (95th percentile — 5th percentile) / median

SSDs — Species Sensitivity Distributions: represent variation in species sensitivity to a stressor
ToMEXx 2.0 — Toxicity of Microplastics Explorer v2.0: expanded MP toxicity database

Field-Specific Terms and Definitions

Allometric Model — Relates organism traits (e.g., body size) to physiological metrics
Bioaccessibility — Fraction of MPs that can be absorbed based on size, shape, species
Bootstrapping — Resampling method for estimating distribution uncertainty
Eco-corona — Biomolecule layer on MP surfaces affecting behavior and toxicity
Empirical SSD — SSD built from raw, untransformed toxicity data

Entanglement — Physical hazard mechanism where fibers trap/interfere with organisms
Filter Feeders / Deposit Feeders — Feeding strategies affecting MP exposure pathways
Fluorescent/Raman Spectroscopy — Techniques to detect MPs via light interactions



Granuloma — Localized inflammation from persistent particles like MPs

Power Law Exponent — Describes frequency-size relationship of particles
Smoothed Distribution — Continuous approximation of probability density
Step-Function Distribution — Piecewise approximation for empirical distributions
Translocation — Movement of particles from gut to tissues/circulatory system



Introduction

Microplastics (MPs), generally defined as plastic particles smaller than 5 mm [1, 2], represent a
diverse and complex class of contaminants [3]. Their increasing prevalence, persistence, and
bioavailability are raising significant concerns amongst governmental bodies [4, 5, 6]. This has led to
increased pressure to develop a reliable, transparent ecological risk assessment (ERA) framework to
inform effective risk management for decision-making. Despite recent advancements, significant
challenges persist in MP ERA frameworks, particularly in accurately representing the diverse
characteristics and behaviors of these contaminants.

A key challenge in MP ERA frameworks is the mismatch between exposures in hazard studies and
actual environmental exposures. Discrepancies exist in particle size, shape, density, polymer types,
chemical composition, and eco-coronas [7, 8, 9]. Methods have been developed to align MP exposure and
effect data based on particle traits, enabling ERAs despite differing particle distributions [10, 11]. This
alignment-based approach, combined with species sensitivity distributions (SSDs), informed MP
management thresholds in aquatic ecosystems using toxicity data published <2021 [12]. However,
confidence in these thresholds is low-medium due to limitations in underlying hazard studies, including
limited environmental relevance of particles used (mostly monodisperse spheres or fragments), few
studies meeting quality criteria, and insufficient toxicity mechanistic understandings [12]. Additionally,
guantifiable uncertainties from alignments were not fully characterized, as models relied on single,
deterministic values rather than complete probability distributions. These uncertainties limited their
applicability in environmental risk management decisions, such as the risk characterization and regulatory
decision for San Francisco Bay waterbodies adopted by the California State Water Resources Control
Board [13, 14].

Thanks to the recent update of the MP toxicity database used in the ERA approach employed by
[12] some uncertainties in MP ERAs may now be reduced. The updated Toxicity of Microplastics Explorer
version 2.0 (ToMEx 2.0) database addresses some of the previous limitations, containing over twice the
data of its predecessor. It features greater diversity in particle traits (e.g., approximately 370 additional
fiber data points and 8 new polymers), along with 26 new freshwater and 32 new marine species [15].
Furthermore, adding a significant number of freshwater species enablesenables thederivation of
thresholds for marine and freshwater environments separately.

Another limitation of the ERA method employed by [12] and others lies in the dependence of SSDs
on modelling the variation of species sensitivities to MP exposure. While the SSD approach has been used
to derive environmental quality standards since the 1980’s in the United States and Europe [16, 17], they
have been criticized for their reliance on theoretical distributional assumptions that ignore a prior
distribution of raw biological responses - and likely misrepresent the variability in biological responses
[18], in addition to collapsing species-specific data into single deterministic values - obscuring
uncertainties and intraspecies/interlaboratory variability [19, 18]. Analysis of large ecotoxicity databases
demonstrate that this ‘intertest variability’ alone contributes roughly a threefold spread in effect
concentrations, yet standard SSD practices average out this variability, confounding test-level noise with
true interspecies differences [20]. To address these limitations, the probabilistic species sensitivity
distribution (PSSD) method was developed. PSSD involves generating a probabilistic toxicity distribution
for each species, which are then combined into an SSD for a specific ecosystem, preserving raw biological
variability and distributions [21]. The PSSD has been further refined to incorporate probabilistic elements
related to uncertainty factors, harmonizing toxicity endpoints into chronic, no-effect concentrations
(NOECs) [22]. This 'PSSD+' method has been applied to MPs [23], but it has not yet incorporated non-
alignment uncertainties into its model framework.



Here, we present an enhanced mechanistic ERA framework for MPs to both improve the reliability
of threshold derivation and populate the assessment with the best available toxicological and
environmental data. This framework probabilistically incorporates uncertainties in bioaccessibility,
environmental particle distributions, inter-laboratory variability, and uncertainty factors through Monte-
Carlo (MC) simulations, which we refer to as a PSSD++. We demonstrate the application of this PSSD++
approach using quality-screened toxicity studies from the TOMEx 2.0 database for freshwater and marine
environments for both food dilution and tissue-translocation-mediated effect mechanisms (environments
and ERMs treated separately), and provide sensitivity analyses to identify influential parameters and
better understand the multi-dimensional nature of the assessment. Last, we assess the
representativeness of the MP toxicity data through comparison to environmental occurrence data we
extracted from the literature. The application of this framework here is provided as a detailed proof-of-
concept, and it is recommended that further applications be applied using site-specific environmental
particle distribution data, amongst other considerations (e.g., inclusion/exclusion of species; biological
organization of endpoints included; etc.).

Materials and Methods

Hazard Data

This study utilized aquatic ecotoxicity data from the ToMEx 2.0 database, a publicly available
dataset containing approximately 13,000 data points extracted from nearly 300 studies [15]. This dataset
includes annotations for quality criteria, initially developed by [10] and refined in [12]. We applied the
same filtering criteria as in [12] based on quality, biological organization (population, individual, tissue,
cellular, subcellular), and organismal groups (e.g., plants, algae, fish), according to the relevant threshold
tier (i.e., tiers 1 — 4), which progress from highly protective assumptions based on all biological endpoints
to more predictive, higher-confidence thresholds based on organismal- and population-level endpoints)
and ecologically relevant metric (ERM) (supplemental information).

Unlike conventional chemicals, ERMs for plastic debris are not single concentrations (e.g., mg/L).
Instead, they represent particle- and species-specific effect mechanisms, encompassing physical
characteristics (e.g., size, shape, density) and chemical composition relevant to the environment [7].
Consistent with [12], we focused on ‘food dilution” and ‘tissue-translocation-mediated effects’ as ERMs.
Only data with defined effect metrics (i.e., NOECs, lowest observed effect concentrations [LOECs], effect
concentrations [ECx], inhibitory effect concentration [ICx], and lethal effect concentrations [LCx]) were
used. Intermediaryl exposure concentrations thatthat did not specify a dose-response point (e.g.,
concentrations reported between LOECs and ECx/LCx values) and highest observed no effect
concentrations (HONECs) were excluded [12]. Aligning toxicity data to ERMs requires particle-level
environmental monitoring data, for which we used the freshwater and marine surface water data
published by [24]. This dataset is restricted to particles > 1 um, so we only aligned hazard data that
exposed organisms to particles > 1 um. Following [12], only particle-based studies were used — with
studies involving the addition of sorbed and/or dissolved chemical toxicants excluded. Further details on
ToMEx 2.0 and the threshold population methods for freshwater and marine environments can be found
in [12] and [15], as well as in the supplemental information.



Occurrence Data

To evaluate how representative the MPs in the ToMEx 2.0 toxicity dataset are of environmental
conditions, we compared their particle traits and relative abundances to those found in marine and
freshwater environments. We conducted targeted literature searches for environmental datasets (i.e.,
Zenodo, Mendeley Data; search term: “microplastics,” searched March—May 2024) and published
summaries (i.e., Google Scholar, searched July 2024) reporting MP characteristics. For each sample or site,
we extracted the proportions of different polymer types (grouped into polyethylene/polyethylene
terephthalate/polyester [PE/PET/Polyester], polypropylene [PP], polystyrene [PS], polyamide [PA],
polyurethane [PUR], polyvinyl chloride [PVC], polytetrafluoroethylene [PTFE], and others), shapes
(spheres, fragments, fibers), and average particle lengths and widths. These traits were selected because
they are most commonly reported and used in ERM alignments. PE, PET, and polyester were grouped, as
they were already pooled in most source studies. Other characteristics known to influence toxicity—such
as biofouling [25], surface charge [ 26, 27], chemical composition including additives and non-intentionally
added substances (NIAS) [ 28, 29], and surface functional groups [ 30, 31]—were not included, as they
were rarely reported. Where available, raw data were used; otherwise, values were extracted from figures
using the R package metaDigitise [32].

In total, we compiled MP trait data from 87 environmental samples (53 freshwater, 36 marine)
across 12 published sources [ 33, 34, 35, 24, 36, 37, 38, 39, 40, 41, 42, 43] (see Excel table in supplementary
information). We compared these environmental MP characteristics to those in ToMEx 2.0 using non-
metric multidimensional scaling (NMDS), a technique for visualizing complex multivariate data in reduced
dimensions [44]. As we did not apply quality screening (e.g., [45]) to the environmental data, these
comparisons may be influenced by unassessed study biases.

Tissue Translocation Bioaccessibility Modelling

We identified studies in TOMEx 2.0 that determined whether or not tissue translocation of MPs
occurred in exposed organisms, and extracted information associated with MP physical characteristics for
each species. Tissue translocation observations were often reported as binary (i.e., translocated or not),
and in the case of the three studies that reported percentages of administered particles translocated, any
amount greater than zero was considered as translocated for the purposes of this assessment. Data from
these studies were used to model the probability of tissue translocation for MPs based on particle length
using binomial logistic regression, with the logit link function: log(p / [1-p]) = B0 + 6:X;, where p is the
probability of the event occurring, 6, is the intercept, 8; is the regression coefficient, and X; is
particleparticle length. To estimate the uncertainty in the threshold particle length associated with a 50%
probability of translocation, we used bootstrap resampling (n = 10,000 simulations).

Ecotoxicological threshold modelling

Two novel approaches were developed and applied here to derive MP ecotoxicological thresholds
in this study, and were compared to the traditional SSD-based approach developed previously in [12] (with
the correction described in [46]). All three approaches used the ERM-based alighment approach described
in [12]((with the minor modification for polydisperse mixture bioaccessibility modelling described in the
supplementary information and in [15]) and apply identical tier filters, ERM definitions, and size ranges (1
to 5,000 um).

The four-tier threshold framework applied here follows [12], where each tier applies a different
set of biological filters and species-level data-collapsing rules, producing a protective-to-predictive



gradient of thresholds. Tiers 1 and 2 (“protective” tiers) include all biological levels of organization and
collapse multiple toxicity values for each species to the 1st quartile. Tiers 3 and 4 (“predictive” tiers)
restrict inputs to organismal- and population-level endpoints and collapse species data to the median. The
lower three tiers use the HC5, but Tier 1 differs in that the threshold is taken as the lower 5th-percentile
confidence bound of the SSD rather than the median HC5 estimate. Tier 4 uses the HC10 to reflect
increased confidence in higher-level biological responses.

The two novel approaches handled these ERM uncertainties probabilistically (Table 1).
MethodMethod 1 (MC+SSD) applies the full ERM/SSD-based workflow from Thornton-Hampton et al. [15]
butbut introduces MC simulations to propagate uncertainty in bioaccessibility limits and environmental
particle-trait distributions.Method 2 (PSSD++) uses the same MC-aligned dataset as Method 1 but replaces
SSD fitting with a modified PSSD+ framework that also propagates intraspecies variability and assessment-
factor uncertainty (Table 1).

All modelling components are linked through a unified sequential workflow: bioaccessibility
models provide ingestion and tissue-translocation limits; these limits and particle-trait distributions are
used to align each toxicity value to its ERM; and the aligned dataset (either single-value or MC-propagated)
is then passed to the selected threshold-modelling method (traditional SSD, MC+SSD, or PSSD++). Only
the MC methods propagate uncertainty in bioaccessibility and ERM alignment; the traditional SSD method
retains deterministic alignments. For each environment, tier, and ERM, we calculated relative confidence
interval widths (RCI = (95th—5th percentile)/median) as a standardized measure of uncertainty [47].

Method 1 (MC+SSD):

Method 1 combines MC simulations for uncertainty propagation on alignments with SSD
threshold derivation, as in [12]. SSDs for unique ERM, threshold tier, and environment combinations were
derived for each MC simulation, forming distributions of threshold values that represent alignment
uncertainty. This differs from [48] by probabilistically treating all parameters (instead of just power law
values).

Latin Hypercube Sampling (LHS) was used to construct probability distributions for MC ERM
alignments, ensuring efficient and uniform sampling across multidimensional parameter space. LHS,
which is advantageous for complex models and recommended for microplastics [, 49, 50], utilized the
sobol_matrices() function from the sensobol R package [51] to generate a Sobol sequence. This sequence
yielded 589 samples across 16 parameters, totaling 9,423 simulations, with each parameter transformed
into its respective probability distribution.

Environmental MP probability distribution data for ERM alignments, as in [12], came from [24].
Alpha power law values were sampled from normal distributions based on [24] mean and standard
deviation, while length-width ratios were sampled from a truncated normal distribution [24] with
bounds of 0.0001 to 1. Bioaccessibility limits were based on a pre-existing ingestible size model and a
derived tissue translocation logistic regression model. Ingestion bioaccessibility used the [52] allometric
model, with Beta and Intercept values sampled from normal distributions (means/standard errors:
0.9341 +0.1376; 1.1200 + 0.3222, respectively, from their codebase). Species- and life stage-specific
body lengths from [15] were used. Tissue translocation bioaccessibility limits were estimated by deriving
the particle length associated with a 50 % probability of translocation from the fitted logistic regression



model described above by solving for the midpoint (-80/£1).) To capture uncertainty, MP particle
lengths were sampled from the fitted regression model by generating normal distributions forfor the
logistic regression's intercept (S1) and slope (80) parameters using their associated standard errors.
Values outside 1-500um were removed for biological plausibility and consistency with the 1um default
lower limit, resulting in a heavily right-skewed truncated ratio distribution (Figure 1).

All probability distribution parameters are in Table S4 and visualized in Figure 1. To reduce
extreme outlier influence, z-scores were calculated for thresholds per environment/tier/ERM. Values
with |z-score| > 3 were removed (0.01% to 2.2% occurrence; Table S6).

A Length Alpha Mass Alpha
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0.2 0.50 %75 1.00
Value
Body Length to Mouth Size Estimation Tissue Translocation Size Limit (um)
Beta
Intercept
0.5 0 0 100 200 300 400 500

Value Particle Length (pm)

Figure 1. Distributions of ERM alignment and re-scaling parameters used in MC simulations. (A) Power
law (alpha, unitless) values for particles (i.e., length, mass, volume, and surface area), and particle length
to width ratios (unitless scale from 0 to 1) are environment-specific (dark blue = marine, light blue =
freshwater), are from [24]. (B) Values used to estimate mouth size openings of organisms based on their
body lengths using the allometric equation derived in [52]. The tissue translocation size values represent
the sizes of microplastics (um) with a predicted 50% probability of translocating tissues based on the
generalized linear model with the lowest AlCc (i.e., logistic regression; binary translocation ~ particle
length; see supplementary information). All species, life stages, organism groups, environments,
polymers, and shapes were included in the generalized linear model used to estimate translocatable
microplastic particle sizes. The distribution of values was generated from 10,000 simulations.



Method 2: Probabilistic Species Sensitivity Distribution (PSSD)++

Method 2 (PSSD++) combines MC-aligned toxicity values (from Method 1) with a modified PSSD+
approach. Unlike standard SSDs, PSSD(++) uses MC simulations to estimate uncertainty for each species'
mean, considering data distribution, inter-laboratory variation, and assessment factors (exposure time,
dose descriptors). While SSDs assume a community response distribution(e.g., log-logistic, log-normal,
etc.) [53], PSSD(++) uses an empirical approach, avoiding the issue of communities not following single
distributions [21, 53 54].

We further modified PSSD+ to incorporate variability from ERM alignments derived
probabilistically from the MC simulations for each species/environment, rather than a blanket intra-
laboratory coefficient of variation (i.e., 0.3 as applied in [22]). Our approach resulted in intraspecies
coefficient of variation values ranging between 0.08 to 2.7, with wider variability when aligning to food
dilution than to tissue translocation ERMs (see supplemental information for details). We also addressed
two technical issues enabling derivation of tiered thresholds and incorporation of large MC datasets
(details in Supplementary Information). We only applied this approach to tiers 3 and 4 of the [12]
framework, as tiers 1 and 2 collapse species-level data to a single point estimate (1st quartile), which
precludes the probabilistic species-level distributions required by the PSSD++ method.

MC simulations on an Intel Core i7 with 64 GB RAM (12 cores) took approximately 5 hours to
generate SSD-based thresholds, utilizing LHS for efficient sampling and robust uncertainty propagation.
PSSD++ generations, using single-threading on the same system, took about 40 minutes per
environment/ERM, totaling 2.7 hours. Due to RAM limitations, 300 PSSD++ simulations were run per
analysis, rather than the typical 10,000 as employed in [21] and [55], which was deemed sufficiently stable
after iterative analyses.

Table 1. Comparison of the traditional Species Sensitivity Distribution (SSD) method (as applied in [12])
with the two novel probabilistic approaches developed in this study (i.e., Monte Carlo [MC] + SSD and
probabilistic SSD [PSSD++]). ERM = ecologically relevant metric; AF = assessment factor; HCx = hazard
concentration for x% of species.

Feature 4, Method - |[|Traditional SSD [12; 15] MC+SSD PSSD++

Probabilistic; incorporates
Probabilistic via MC sampling [luncertainty in ERM alignments,
of alignment parameters intraspecies variability, and
species-level aggregation

Deterministic; no
Uncertainty treatment ||propagation of ERM-
alignment uncertainty

Distributional Parametric SSD (e.g., log- [||Parametric SSD (e.g., log- MC-generated SSD
assumption(s) logistic/log-normal, etc.) logistic/log-normal, etc.) (nonparametric)

Alignment inputs (i.e.,
ERM, bioaccessibility [|Single-value alignment
limits, particle traits)

MC-propagated alignment MC-propagated alignment
distributions distributions
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Species-level
representation

1 point per species (tier-
dependent)

1 point per species per MC
simulation (also tier-
dependent)

Full distribution per species
(propagated variability +
alignment + AF uncertainty)

Assessment factor
(AF) treatment

Deterministic; fixed AFs
applied directly

Deterministic AFs applied
(after MC)

Probabilistic; AF uncertainty
incorporated into species-level
MC distributions

Output

HCx with 95% Cl reflecting

Distribution of HCx reflecting
combined alignment and

Distribution of HCx reflecting
alignment, species-level, and AF

parametric SSD uncertainty ) . .
parametric SSD uncertainties ||uncertainties

Sensitivity Analyses

We conducted four sensitivity analyses on thresholds to understand alignment
multidimensionality, disentangle species and environmental sensitivities, determine individual study
influence, and evaluate study quality filters. We performed a one-at-a-time sensitivity analysis using MC
simulation to explore the influence of ERM-alignment parameters, visualizing relationships with
hexagonal density scatterplots for representative Tier 2 freshwater and marine thresholds. We also
assessed whether marine or freshwater species are inherently more or less sensitive by generating
thresholds using freshwater species while holding other parameters constant (e.g., using marine
environmental microplastics distribution data). A leave-one-out sensitivity analysis determined individual
study influence, systematically removing studies and recalculating thresholds, as a single data point can
disproportionately affect HC values. Finally, we assessed the influence of quality filters (technical and risk
assessment criteria from [12] using a leave-one-out approach on representative Tier 2 thresholds for both
food dilution and tissue translocation ERMs in marine and freshwater environments. All leave-one-out
sensitivity analyses were conducted relative to the default study/species filters for each tier, as described
earlier.
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Results

Database coverage

Organismal data covered in the TOMEXx 2.0 dataset

ToMEx 2.0 contains approximately an even split between toxicity data for freshwater and marine
species, with 144 studies for freshwater species (n = 63 species; 6,555 data points), and 149 toxicity studies
for marine species (n = 101 species; 6,243 data points). However, approximately 90% of all toxicity data in
ToMEx 2.0 was not used in threshold modelling due to the data points failing one or more of the following
conditions: the study did not meet minimum quality criteria from [12]; an inapplicability of species (e.g.,
plants and bacteria were not included); the exposure particles being outside of the default (i.e., 1 to 5,000
um) or bioaccessible (species/ERM-dependant) size range; or the effect metric being an intermediary
exposure concentration or a HONEC. Specifically, just 16 studies for freshwater species (n = 10 species;
140 data points), and 16 studies for marine species (17 species; 235 data points) were used for any of the
four-tiered thresholds, with the majority of data points requiring some adjusting using uncertainty factors
(i.e., to translate from acute to chronic, or from various effect metrics to NOECs), with 71% of marine data
points and 84% of freshwater data points requiring a composite uncertainty factor between 2 and 100 for
tiers 1 and 2 (Table S1). The proportions of chronic vs. acute studies was consistent for tiers 1&2 (36%
chronic) and 3&4 (28% chronic) for freshwater species, while for marine species, proportions varied
dramatically between these tiers (76% chronic for tiers 1&2; 27% chronic for tiers 3&4) (Table S1).

While the overall amounts of data were comparable between environments, the representation
of biological diversity was significantly greater for the marine thresholds, with 8 distinct organismal groups
included in the marine thresholds, compared with just 3 for freshwater thresholds. Of the marine data
used in any thresholds, there were 21 genera represented: Oryzias, Crustacea, Echinoderm, Mytilus,
Diaphanosoma, Pseudechinus, Cnidaria, Hydra, Tigriopus, Ciliophora, Strombidium, Karenia, Rotifera,
Brachionus, Pinctada, Paracentrotus, Crepidula, Tripneustes, Parvocalanus, Centropristis, Skeletonema. Of
the freshwater data that we used in any threshold, there were only 7 genera represented: Daphnia,
Ceriodaphnia, Moina, Hyalella, Oryzias, Oncorhynchus, Raphidocelis, Chlorella, and Danio. For biological
levels of organization, the majority of the data for both freshwater and marine species were for individual-
level and sub-cellular responses (Figure 2).
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Figure 2. Barplot showing microplastic hazard data used for threshold derivation in this study, faceted by
environment and biological levels of organization. Organismal groups are separated in rows. Note that the
x-axis is in log10 scale.
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MP Particle Trait Hazard Data Representativeness

A comparison was made between the characteristics of MPs used in toxicity tests (ToMEx 2.0) and
those more commonly found in environmental samples (Figure 3). The NMDS analysis revealed differences
between the MPs used in toxicity tests and those present in freshwater and marine environments (Figure
3). It is important to note that, although the NMDS ordination plot is a useful visualization of these
multivariate differences, the apparent proximity of some environmental samples to the ToMEx 2.0
centroid primarily reflects the compression of high-dimensional particle-trait variation into two axes
rather than true similarity to the spherical, polydisperse laboratory particles represented in the database.

A ToMEx 2.0 (full; freshwater)
A ToMEx 2.0 (full; marine) Other
4 -8 ToMEXx 2.0 (quality-filtered; freshwater)
8 ToMEx 2.0 (quality-filtered; marine)
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Figure 3. NMDS scatterplot demonstrating the representativeness of MP particle traits in TOMEx 2.0
compared to MPs from environmental samples. MP particle trait data analyzed here included relative
proportions of different polymer types, shapes (fragments, spheres, fibers), and size measures (mean
length, median length, surface area). Triangles: full TOMEx 2.0 data, squares: TOMEx 2.0 data (quality score
filtered), circles: environmental samples, light blue: freshwater, dark blue: marine. Arrows show increasing
values for the respective particle characteristics. Arrow lengths reflect the strength of the association with
the NMDS axes.

Toxicity tests (full TOMEx 2.0 data) involving both marine and freshwater organisms were strongly
associated with the use of spheres (34% of experiments) and fragments (39% of experiments), and PS
(24% of experiments) and PE/PET/Polyester (43% of experiments) polymers. The relative abundances of
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spheres and fragments, and PS and PE/PET/Polyester MPs in the environment were comparatively lower
overall (median(spheres): 0%, rangespheres): 0-77%; Median fragments): 22 %, rangeragments): 0-94 %; medianps):
4%, rangeps): 0-69%; median(ee/per/polyester): 36%, rangepe/ret/polyester): 0-100%). Conversely, PP (median
proportion: 14%) was primarily associated with MPs from environmental samples but was largely absent
from toxicity tests (6% of particles). Concerning particle size, the mean length and width of particles used
in the toxicity tests was smaller (meanength) £ SD: 250 £ 834 um, meanwiatn) £ SD: 135 + 481um) than in
environmental MPs (mean(ength) = SD: 596 + 748 um, meanigtn) £ SD: 124 + 233 um, however these
differences are likely due to monitoring artifacts - i.e., the size distributions of measured particles are
highly influenced by the mesh sizes of filters used, and size limitations of the analytical method(s) used. A
notable underrepresentation of fibers was observed in ToMEx 2.0, making up 10% of particles in marine
studies and 7% of particles in freshwater studies (8% overall), in contrast to its predominance in
environmental samples, with median proportions of 49% and 85% in marine and freshwater studies
(overall median: 77%), respectively.

Tissue Translocation Data Extraction and Modelling

We identified 27 studies within the database reporting tissue translocation measurements in
exposed organisms, comprising 54 unique observations (i.e., the uniqgue combination of MP characteristics
and species/tissues), with 36 confirmed observations of translocation, and 18 reported non-
translocations. The vast majority of studies used spheres (18), with a limited number using fragments (5)
or fibers (4). Particle lengths in these studies ranged from 0.024 um to 1,500 um, with a median length of
5.5 um (mean length = 63 um; 1st quartile: 0.25 um, 3rd quartile: 60.8 um). Polystyrene was the most
commonly-used polymer in these studies (15), followed by polyethylene (4), unreported polymer types
(4), polyamide (2), a proprietary composition from Cospheric (4), polyvinyl chloride (1), and polyester (1),
with the remaining studies investigating a mix of polymers including acrylonitrile butadiene styrene, the
natural polymer cotton, polyester, polyethylene terephthalate, polypropylene, polyethylene co-vinyl
acetate, and polyacrylonitrile. Fish were the most commonly investigated species in these studies (19),
followed by mussel (3), with the following species having just one study each: crab, crustacean, mollusk,
oyster, and shrimp. Liver was the most commonly investigated tissue (5 studies), with the following tissues
also reported (studies often reported translocation in multiple tissues): whole body, fillet, embryos, head,
yolk sac, brain, eyes, ovaries, gonads, spleen, kidney, pancreas, circulatory system, cytoskeleton, muscles,
and skin.

The binomial logistic regression analysis of tissue translocation MP data revealed a significant
inverse relationship between MP particle length and the probability of tissue translocation (Figure 4).
Distinctions according to particle characteristics (e.g., polymers, shapes) or organismal traits (e.g., species,
tissues, etc.) were not considered in these analyses due to the relatively small size of the dataset.
Therefore, the association between particle size and translocation probability that we derived here was
generalized across all particle types and organisms in our bioaccessibility modelling. MP particle length
was a significant predictor of tissue translocation (logistic regression: z = ; p = 0.03; Figure 4). The model
yielded an intercept (Bo) of 1.34 (SE = 0.40) and a slope coefficient (B4) of -0.015 (SE = 0.0067) for particle
length (um), indicating that as particle length increases, the log-odds of translocation decrease. The root
mean square error of this model was 0.53 log-odds units. The truncated ratio distribution of particle
lengths at which there is a 50% probability of translocation across tissues derived using these parameters
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was lognormal, with a median value of 88 um, a mean value of 128 um, an interquartile range of 62 to
131 um and a 95% confidence interval of 36 to 302 um (Figure 4).
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Figure 4. The binomial logistic regression model was fit to MP tissue translocation data. The y-axis
represents the probability of translocation, and the x-axis is the MP particle length (um) (note the logl10
scale). The ribbon surrounding the regression line represents the 95% confidence interval. Individual data
points for tissue translocation study findings (binary) are represented with red bars on top (in the case of
translocation being demonstrated) and blue bars on the bottom (in the case of translocation not being
demonstrated).

Probabilistically-Derived Thresholds

Thresholds derived using the three approaches—SSD, MC+SSD, and PSSD++—ranged from 1 x 10~°
to 137 particles/L for food dilution, and from 0.81 to 9,510 particles/L for tissue translocation-mediated
effects across all tiers and environments (Table 2). While median threshold values were broadly in the
same order across methods, SSD and MC+SSD results were within 20% of one another, whereas PSSD++
thresholds were consistently lower—by up to 2-fold—with the largest differences observed in marine
environments (Table 2).

Despite the similarity in medians, the methods diverged in how they captured uncertainty. SSD-
derived thresholds exhibited the widest relative confidence intervals (RCls), except for Tier 3 freshwater
food dilution, where PSSD++ had the highest RCI (Table S10; Figure 6). For all tiers and ERMs, the 5th
percentile values were lowest for PSSD++, while its 95th percentile values were often intermediate—lower
than SSD but higher than MC+SSD. Although this pattern might initially suggest that PSSD++ captures a
broader range of uncertainty, the wider RCls observed for SSD thresholds largely reflect uncertainty
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introduced through parametric model fitting, especially in cases with limited species counts or wide intra-
species variability. By contrast, the PSSD++ approach relies on empirical species-level distributions rather
than parametric SSD fits, which can reduce upper-tail variability and result in narrower RCls despite
propagating more process-level uncertainty. Additionally, the use of 300 PSSD++ simulations (due to RAM
constraints)- fewer than the iteration counts typically employed in PSSD analyses- may limit sampling of
the extreme tails and thus underestimate the full uncertainty range. Consequently, while PSSD++
thresholds for some cases (e.g., Tier 3 freshwater food dilution) varied substantially- up to 24-fold across
the confidence interval (Table S8)- direct comparisons of RCl widths across methods should be interpreted
cautiously.

Threshold distributions from the PSSD++ method varied by ERM and environment but showed
relatively minor differences across tiers (Figure 5; Figure 6; Figure S13A). Intra-species data availability and
integrated variability varied significantly by species and environment, while remaining consistent across
ERMs (Figure 5). Freshwater tissue translocation thresholds were highly positively skewed, with long left
tails, while marine thresholds exhibited minimal skew. Kurtosis was highest for tissue translocation
thresholds overall, especially in marine systems. Freshwater thresholds had higher RCls (8 to 59) than
marine thresholds (3 to 9) across ERMs and tiers. Among ERMs, food dilution thresholds had higher
uncertainty (RCls: 8 to 59) than tissue translocation thresholds (RCls: 3 to 18) (Table S8). Within each ERM
and environment, Tier 4 thresholds consistently showed lower RCls than Tier 3, likely reflecting greater
robustness of higher percentile (HC) values. Marine thresholds also showed a higher percentage of
statistical outliers (1.5 x IQR) than freshwater thresholds for both ERMs (Figure S5).

In summary, while all methods yielded similar median thresholds, PSSD++ consistently produced
the lowest medians and 5"-percentile threshold values, reflecting its more precautionary treatment of
uncertainty. However, PSSD++ did not consistently show the widest uncertainty bounds; SSD-based
thresholds generally had the largest RCls, with PSSD++ exceeding them only in specific cases (e.g., Tier 3
freshwater food dilution). This reflects differences in how uncertainty is estimated, as well as the limited
number of PSSD++ simulations, which may constrain tail sampling. Despite consistent trends in thresholds
between methods, results are not statistically different due to the relatively high variability in the
underlying data.

Table 2. Proposed four-tiered SSD-based ecotoxicological microplastics thresholds for freshwater and
marine environments based on food dilution and tissue translocation-mediated effects ERMs derived
using the traditional SSD-based approach [12; 15]; the MC+SSD approach, and the PSSD++ approach.
Values represent median threshold values from the probabilistic assessment, with the values in
parentheses corresponding to the 95% confidence intervals. Values are reported in particles/L (aligned to
particle lengths of 1 to 5,000 um).

Environment-> Marine Freshwater
Tier 4 ERM > Food Dilution Tissue Food Tissue Translocation
Method | Translocation Dilution
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ssD? 4.8x10° 0.82 0.4 93
(NA) (NA) (NA) (NA)
: ;;f/rlcn MC+SSD® 1.0x10° 0.81 0.4 100
° (1.0x10%t0 1.0x10%) | (0.21t01.8) | (0.03 to 4) (66 to 180)
PSSD++¢ NAC NAC NAC NAC
ssD? 2.6x10° 13 4.9 720
(4.8x10° to 1.1) (0.82 t0 380) | (0.4 to 150) (93 to 23,000)
: 9T5';ril) MC+SSD? 2.6x10° 13 4.1 710
° 23x10%t02.2x102) | (6.4t030) | (0.341t038) (460 to 1,100)
PSSD++¢ NA® NA® NA® NAC
SSD? 0.30 490 42 4,800
(0.03 to 7.3) (140 to 5,300) (28 to (1,900 to 54,000)
2,400)
Tier3 MC+SSD? 0.28 480 36 4,600
(95% Cl) (0.029 t0 2.2) (160 to 1,200) | (3.4t0250) | (2,000 to 6,700)
PSSD++¢ 0.140 320 31 2,150
(0.01t0 1.2) (74101,400) | (0.14to (167 to 38,000)
1,500)
ssD? 15 1,600 140 9,500
(0.22 to 44) (430 to (63 to (3,200 to 120,000)
16,000) 6,700)
Tierd MC+SSD® 1.3 1,550 120 9,500
(95% Cl) (0.15 t0 9.5) (605 t0 3,820) | (14t0770) | (4,100 to 14,000)
PSSD++¢ 0.64 710 140 6,400
(0.081 to 5.0) (190t02,500) | (6.3 to (420 to 56,000)
1,300)

295% confidence intervals for SSD-based thresholds are the bootstrap uncertainties of distributions fit to
the species data at the HC5 for Tiers 2 and 3, and HC10 for Tier 4. Because Tier 1 is the lower 95%
confidence interval of the SSD at the HC5, no further uncertainty estimates can be provided for that tier
and this approach.
b95% confidence intervals for MC+SSD-based thresholds represent the distribution values at those
percentiles for the HC5/HC10 SSD values for the corresponding tier.
‘Median values from PSSD++ values are presented, alongside the 5th and 95th percentiles at the
HC5/HC10 in the PSSDs for Tiers 3 and 4, respectively. Since data collapsing is not applied in the PSSD++
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approach, values are not presented for Tiers 1 and 2 (which use the 1st quartile of each species’ data to
populate their SSDs).
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Figure 5. Modified Probabilistic Species Sensitivity Distribution (PSSD++) of MPs for tissue translocation-
mediated effects (top row) and food dilution (bottom row) ERMs, for marine (left column) and freshwater
(right column) ecosystems. Labels and colored points denote individual species with colors corresponding
to their organismal group. Each NOEC for each species is plotted such that the median aligned value is
darker and larger, with the distribution of aligned values from the MC simulation appearing smaller and
with lighter shading. Values up to the 99.99th and 0.0001th percentile values from the MC-aligned
datasets are visible. For data-rich species in which numerous studies were used, overlapping points
demonstrate the low variability between the aligned values (e.g., Daphnia magna). The probabilistic
distribution for each PSSD++ is shown with a black line.
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Figure 6. MP PNEC values for Tier 3 are compared between different modelling methods for marine and
freshwater ecosystems, and food dilution and tissue translocation ERM. PNECs derived using the two
probabilistic modelling methods are shown with smoothed distributions, with blue denoting MC+SSD (i.e.,
“method 1”) and pink denoting PSSD++ (i.e., “method 2”). The traditional SSD-based approach is shown
with a green point and error bars representing the 5th and 95th percentile values of the bootstrapped
uncertainty for the SSD.

Sensitivity Analyses

Alignments

The alignment sensitivity analysis revealed a strong influence of several MP particle characteristics
used in the alignments, as well as bioavailability modelling parameters on the resulting thresholds, which
varied according to ERM and environment. For food dilution, the power law for particle volume had the
strongest influence on the thresholds for both marine and freshwater environments and exhibited a first-
order exponential-like positive relationship (Figure 7). The MP particle length-to-width ratio exhibited a
weak, positive association with the resulting threshold (Figure 7). No apparent relationships were
observed between other parameters that aligned toxicity values to the food dilution ERM and the resulting
thresholds, including the ingestion bioavailability model parameters (Figure 7).
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In the case of tissue translocation, the following parameters strongly influenced the resulting
thresholds: tissue translocation bioavailability model size limit, surface area power law alpha value, and
particle length-to-width ratio (with a stronger influence on freshwater thresholds than on marine) (Figure
7). A strong inverse exponential relationship between the tissue translocation limit and threshold was
present for the marine environment, with a noticeably weaker, somewhat linear relationship for the
freshwater environment (Figure 7). For the surface area power law alpha value, there was a positive linear
relationship with the resulting threshold. In the case of the length-to-width ratio of particles, no trend was
observed with marine thresholds, however for freshwater there was a strong, positive, non-linear
relationship (~3rd-degree polynomial) (Figure 7). The parameters involved in the allometric body length
to plastic ingestion model had weak negative relationships to the threshold (Figure 7).
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Figure 7. Hexagonal density scatterplots of ERM alignment parameters and their influence on a
representative tier of the ecotoxicological thresholds (i.e., Tier 3) for two ERMs, i.e., Food Dilution (left
column) and Tissue Translocation-Mediated Effects (right column), derived from Marine (top row) and
Freshwater (bottom row) environments. Each relevant parameter involved in the alignment/rescaling of
the threshold is presented as a hexagonal density scatterplot. Values for each parameter are on the x-axis
(alpha values and length-to-width ratios are unitless; tissue translocation size limit is measured in pms,
and the body length to mouth size opening estimation parameters are in mm). The y-axis represents the
threshold value measured in particles/L. Lighter colors indicate a higher density of obtained values (i.e., x
and y) from the MC simulations, with the red dots indicating the median for a given x-y pair to illustrate
trends.
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Environment

Marine toxicity thresholds were consistently lower than freshwater thresholds across all
ERMs/tiers, with greater differences at lower tiers. For example, the marine food dilution threshold for
tier 1 was ~40,000 times lower than its freshwater counterpart, compared to ~100 times lower for tier 4.
Tissue translocation showed smaller differences between environments compared to food dilution, with
the marine threshold being ~100 times lower for tier 1, and just ~6 times lower for tier 4.

Sensitivity analysis revealed that alignment parameters primarily drove these differences,
accounting for 1 to 2 orders of magnitude. Freshwater-aligned values were always higher. For instance,
marine Tier 2 thresholds for food dilution (2.6x10-3 particles/L) and tissue translocation (13 particles/L)
increased ~10 to 100 times when freshwater parameters were applied (0.25 and 110 particles/L,
respectively). Even after controlling for alignment parameters, freshwater thresholds remained 1.3- to
300-fold higher than marine thresholds, with differences inversely related to the tier. For example, when
marine distribution parameters were used, freshwater species showed 300x higher food dilution and 19x
higher tissue translocation thresholds for Tier 1, but only 4.3x and 1.3x higher for Tier 4, respectively.

Studies and Quality

The leave-one-out sensitivity analysis conducted on individual studies demonstrated varying
sensitivities of thresholds by tier, ERM, and environment (Figure 8). Overall, thresholds for food dilution
were more strongly influenced by individual studies than the thresholds for tissue translocation, and
freshwater environments were relatively less volatile than marine thresholds. Leave-one-out sensitivity
distributions were all strongly positively skewed, with the vast majority of studies (70%) having minimal
influence by themselves on the thresholds (fold-change between -0.5 and +2). Across all threshold tiers,
ERMs, and environments, there were a small number of studies that had strong influences. Specifically,
15% of studies would increase the threshold by more than double when they were removed, with 2.4% of
studies causing more than a +10-fold change (Figure 8). On the opposing end of the spectrum, there were
7.8% of studies that would have caused the thresholds to decrease by more than one-half when removed
(Figure 8).

Freshwater tissue translocation thresholds were the least sensitive to the removal of a single
study, with the most influential study on the low end being a ~30% lower Tier 4 (removal of Jaikumar et
al. [56]’s Ceriodaphnia and Daphnia sp. study), and on the high end, a +3.7-fold change for Tier 1 (removal
of Mizukami-Murata et al. [57]’'s Raphidocelis subcapitata study) (Figure 8). Marine thresholds were far
more sensitive to the removal of single studies, and had a maximum fold-change of +83 and +18 for food
dilution (Tiers 1 and 2, respectively) and +15 for tissue translocation (Tier 1) when Capolupo et al. [58]’s
study on Mytilus galloprovincialis is removed (Figure 8). Capolupo et al. [58]’s influence is substantially
greater than all other studies for all thresholds, environments, and ERMs, with the next most influential
studies overall being Kim & Rhee et al. [59]’s study on Moina macrocopa (+34-fold change for freshwater
food dilution tier 1) and Richardson et al. [60]’s study on Pseudechinus huttoni (+12-fold change for marine
food dilution tier 1). The marine food dilution threshold was also the most sensitive on the low end of the
distribution, with the removal of Beiras et al. [61]’s study on Brachionus plicatilis, Tigriopus fulvus, and
Paracentrotus lividus resulting in a -0.4-fold change for Tier 2.
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Figure 8. Sensitivity analysis of ecotoxicological thresholds based on leaving one study out from the
derivation at a time. Each point represents the fold-change of the threshold when a single study is
removed (i.e.,[threshold without study/threshold with all studies] - 1). Points are jittered vertically to show
the distribution of points. Minimum and maximum threshold values based on leaving a single study out
are annotated with text. In all cases, the majority of studies have minimal influence on thresholds (i.e.,
fold change < 2); however, several tiers/environments/ERMs are highly sensitive to at least one study.
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Discussion

This is the first study to have propagated the uncertainties involved in the particle-associated ERM
alignment-based approach to deriving thresholds for MPs. While the refined PSSD++ approach developed
in this study represents a substantial improvement over traditional SSD-based methods for assessing
hazards of MPs, particularly in its ability to propagate uncertainty of particle-associated ERM alignments,
bioaccessibilities, intra-species variabilities, and assessment factors, several key limitations remain, which
may be separated by unquantifiable and quantifiable uncertainties. The unquantifiable uncertainties stem
from constraints in the underlying data rather than the analytical methodology itself. First, the ToMEx 2.0
toxicological dataset, while the most comprehensive available, still underrepresents the diversity of MP
characteristics present in natural environments. Second, the bioaccessibility model for tissue translocation
could be more accurate by reducing simplifications that may not reflect biological complexity and
addressing issues with the underlying studies. As a result, while the analytical framework itself is robust
and flexible, its predictive power remains tightly coupled to the quality and representativeness of available
input data. In contrast, quantifiable uncertainties and variabilities — driven by ERM alignments and
propagated through our novel modelling process - are well characterized by the PSSD++ method, and
comparisons with alternative modelling approaches highlight the advantages of probabilistic methods in
capturing these sources of variability.

Data representativeness

Although the ERM alignment framework is designed to reduce dependence on raw particle
characteristics used in toxicity tests- thereby mitigating some issues of representativeness- this approach
only captures ingestion-related food dilution and tissue translocation effects [11, 12]. Many other
mechanisms through which MPs influence toxicity, such as chemical leaching (e.g., [62, 63, 28]), particle
charge and surface chemistry [64, 65, 66], eco-corona formation [7, 8, 67], weathering [68, 25, 69, 70, 71],
and shape-dependent physical interactions (e.g., entanglement [72]), fall outside the two ERMs used here.
Because these mechanisms can influence toxicity independently of the assumed ERMs, unrepresentative
particle characteristics in toxicity studies reduce the reliability of derived thresholds even after alignment.
Thus, understanding the extent and nature of these data gaps remains critical for evaluating the
robustness and generalizability of our approach.

The ToMEx 2.0 dataset reveals critical gaps and persistent inconsistencies between the
characteristics of MPs used in laboratory toxicity tests and those found in aquatic environments [73].
Notably, differences in toxicities between polymers and shapes -if any- are poorly represented. For
example, fibers may be more toxic than non-fibers [74, 75], and some polymers may be more toxic due to
intentionally-added chemicals (e.g., bisphenol A, phthalates, 6PPD) or NIAS such as residual oligomers,
monomers, industrial chemicals, pharmaceuticals, and pesticides [62, 63, 28]. While comprehensive
testing of all polymers and formulations is neither feasible nor necessary [76], a more representative
dataset of MPs to which organisms are exposed would improve risk assessment reliability.

24



Toxicity tests predominantly used PS particles, followed by PE, while other environmentally
relevant polymers (PET, polyester, PP, PVC, PTFE) were underrepresented despite their prevalence and
high production volume [77, 78, 79]. MPs from bio-based plastics were also underrepresented, despite
their growing use [77, 80] and limited environmental data [81]. Tire wear particles containing synthetic
rubbers and plasticizers were rarely tested (with just one study’s toxicity data used in this assessment
[82]), despite their widespread presence [83].

Shapes of MPs in toxicity tests also diverged from environmental observations. Spheres were
predominantly used, while fibers - highly abundant in natural environments - were rarely considered. This
is concerning given fibers’ increased risk of entanglement and ingestion. Studies have reported the high
prevalence of MP fibers ingested by organisms such as crustaceans [84], mussels [85], fish [86], and other
taxa from both freshwater and marine environments. Fragments, more common in environmental
samples than in toxicity tests, may elicit different biological responses due to their greater physical
obstruction potential, enhanced gut disruption, their greater likelihood of internal laceration, and higher
cellular toxicity from roughness [87, 88, 89].

Particle size inconsistencies were also identified, which may influence uptake, tissue translocation,
digestive transit, excretion, and toxicological outcomes [90, 91], underscoring the need for realistic size
distributions that reflect environmental conditions to improve ecological relevance. While the alighments
accounted for the bioaccessibility aspect to some extent, and the different size ranges used in experiments
incorporated some size-specific toxicity differences, some differences may still remain.

Beyond polymer type, shape, and size, the lack of weathering and other environmental modifiers
limits ecological relevance. Features like dissolved organic matter (DOM) or biofilms—ubiquitous in
nature—were rarely reported, especially in freshwater tests. These factors can alter MP behavior,
bioavailability, and toxicity by influencing aggregation, surface charge, or interactions with contaminants
[68, 25, 69, 70, 71]. Similarly, surface charges and functional chemical groups were considered in few
studies, despite their influence on particle reactivity and toxicity [64, 65, 66].

This updated framework did not address plastic-associated chemicals, including additives, NIAS,
and sorbed chemicals, which can leach and cause toxicity [92]. Despite efforts to characterize these
chemicals [28, 63] and model their transfer via MPs in food webs [93], a lack of chemical monitoring data
hinders aquatic risk characterization [94]. The framework also did not consider plastics as vectors for
pathogens, which can harbor and transport microorganisms and antibiotic-resistant bacteria [95, 96].
Future ERA frameworks should integrate risks from both particle-induced hazards and those from
chemicals and pathogens.

The availability and cost of commercial MPs, and challenges in manufacturing and
characterization, likely contribute to discrepancies between MPs used in toxicity testing and those in the
environment. Analytical limitations and costs also restrict surface charge and functional group
characterization. This divergence underscores the need for future research to incorporate a broader, more
environmentally realistic range of MP characteristics into experimental designs. Including diverse polymer
types, shapes (especially fibers), realistic size distributions, and environmentally relevant conditions (e.g.,
DOM, biofilms) will enhance the ecological validity of toxicity assessments.
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Tissue Translocation Modelling

Translocation—the movement of particles from the digestive tract into tissues and potentially
systemic circulation—is governed by particle traits (size, shape) and organism-specific factors like age and
internalization mode [97, 98]. This study used a data-driven model to estimate size-dependent
translocation probabilities, finding smaller particles to have higher uptake, and incorporated model
uncertainty via MC simulations—an advance over previous single-value approaches. Below, we discuss
the biological plausibility of this model and discuss its room for improvement to more accurately account
for bioaccessibility via translocation. Principally, a more nuanced model implemented in our probabilistic
framework could improve accuracy; however, the development of such a model is constrained by the
limited studies reporting continuous translocation data, limited representation of the diversity of MP
particle traits and biological organisms, and the lack of fit-for-purpose quality criteria to evaluate studies.

The model’s biological plausibility is supported by mechanistic evidence: studies report MP
translocation from 24 nm to 100 um, with a median 50% probability at 88 um — consistent with the 83 pm
value derived in [12], which used the same modelling approach, but a smaller dataset for derivation.
Submicron to micron-sized MPs can cross epithelial barriers via endocytosis, paracellular transport, or
transcytosis through microfold cells [99, 100], though the maximum translocatable size is debated. The
size limit for endocytosis varies by mechanism: clathrin- and caveolin-mediated endocytosis typically
transport particles up to 200 nm and 50-100 nm, respectively [101, 102]; macropinocytosis can
accommodate up to ~5 um, and phagocytosis (by immune cells) can handle >20 um [103]. Some studies
report even larger particles crossing barriers [104, 105, 99, 106, 100], and field studies have observed
translocation of particles up to 567 um [107, 108, 109]. Granuloma formation may allow larger MPs to
enter muscle tissue [106], but more research is needed. Since the tissue translocation limit is inversely
related to threshold values, including larger MPs in the model may underestimate thresholds.

The logistic regression model applies a binary size cutoff for translocation, which simplifies the
continuous nature of biological uptake. However, using logistic regression with MC simulations to
propagate uncertainty is a key improvement over prior methods (e.g., [12]), as it better captures biological
variability. A binary model was used due to limited data: only 3 of 25 studies reported uptake percentages
[106, 110, 87]. Future models could benefit from integrating organism-specific traits (e.g., gill presence,
feeding mode such as filter, deposit, or predation), which influence exposure and uptake [111, 112], and
consider multiple compartments such as the human physiologically based kinetic model developed in [50].

Currently, the model uses only size to predict translocation, not accounting for shape, surface
charge, or modifications, due to the predominance of pristine spheres in the database (18 studies vs. 5 on
fragments and 6 on fibers/mixes). Fibers may have distinct uptake/retention due to flexibility and slower
gut passage [89]. Surface charge and modifications, often induced by weathering or bio/eco-coronas, can
significantly affect translocation via endocytosis, phagocytosis, and paracellular transport [113, 114, 65,
67]. As most studies used pristine particles, the model may underestimate environmental MP
translocation.
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Methodological challenges also complicate translocation assessment. Self-contamination is a
major uncertainty, as MPs are pervasive in labs and can be introduced via air, clothing, or equipment [115],
leading to false positives and overestimated translocation rates [116]. While lab exposures allow better
contamination control, they remain susceptible to biases, especially with fluorescently labeled particles
[117]. Detection methods (fluorescent/Raman microspectroscopy) must account for background
fluorescence, spectral overlap, and detection limits [118]. Sample preparation (e.g., aggressive digestion,
filtration) may also affect MP detection or distribution in tissues, introducing artifacts [119]. Developing
quality criteria for translocation studies was beyond this study’s scope, but future work should address
this.

These findings highlight the complex interplay of MP traits, organismal factors, and environment
in translocation. Incorporating model uncertainty yields more realistic probability distributions and robust
threshold estimates, but further improvements are needed. Future research should standardize detection
protocols, improve contamination controls, and expand datasets to refine models and enhance ecological
risk assessments. Longitudinal studies on long-term accumulation and toxicokinetics of translocated MPs
are also crucial for understanding broader ecological and human health impacts.

Quantified Drivers of Threshold Magnitude and UncertaintyAcross all tiers, environments, and
modelling approaches, three factors consistently shaped the magnitude and uncertainty of derived MP
thresholds: (1) the ERM to which toxicity data were aligned, (2) the modelling framework used to
propagate alignment and biological uncertainties, and (3) the environmental particle trait distributions
used in the alignments. While analytically distinct, these factors are tightly interrelated, and considering
them together provides clearer insight into the primary sources of variability in the resulting thresholds.

ERMs

Across all combinations of tiers, environments, and modelling approaches, the effect mechanism
(i.e., ERM) had the most consistent influence on both the magnitude and relative uncertainty of the
derived thresholds. As described above, food dilution thresholds were consistently lower than tissue
translocation thresholds across all model types; however, this increased sensitivity was accompanied by
greater normalized uncertainty, with food dilution thresholds exhibiting higher RCls than their tissue
translocation counterparts. This contrast is likely driven by differences in how bioaccessibility is modeled:
food dilution thresholds depend on species-specific ingestion bioaccessibility estimates (i.e., using body
length measurements from various sources, and the model from [52]), which introduce variability across
both species and particle traits and includes a wide range of particle sizes (8 um to 70,273 um) whereas
tissue translocation is based on a species-agnostic logistic model that uses a narrower and more stable
size range (i.e., 88 um or the mouth size opening - whichever is smaller), reducing the variability introduced
by different rescaling values.

Modelling Techniques

While there were minimal differences in magnitude between thresholds derived using different
modelling techniques, there were marked differences in their uncertainties. Probabilistic approaches
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(MC+SSD and PSSD++) revealed clearer distinctions between ERMs, often showing non-overlapping 95%
Cls where the traditional SSD-based method did not (a pattern that aligns with an earlier assessment in
[12]). This suggests that these newer methods may be better suited for capturing the variability inherent
in species response and bioaccessibility modelling by accounting for uncertainty due to alignments. In
contrast, the environmental compartment (marine vs. freshwater) had a relatively smaller influence on
normalized uncertainty, although marine thresholds were generally lower and slightly more variable in
absolute terms. These results reinforce that ERM selection is the dominant factor shaping both the central
estimates and the uncertainty distributions of MP hazard thresholds.

Environments

The environmental context (marine vs. freshwater) significantly influenced the magnitude and
variability of derived MP thresholds. Unlike [12], which combined data due to limited sample size, the
expanded ToMEx 2.0 database allowed for independent SSD development for each environment (with
sufficient species, n 2 5; [120]). This enabled more tailored threshold derivation and investigation into
species/parameter differences. While some studies hypothesize that marine thresholds can be
extrapolated from freshwater data (e.g., [121]), our findings suggest that such extrapolation may be
unreliable. Specifically, marine thresholds were consistently lower than freshwater thresholds by
approximately 0.5 to 2.5 orders of magnitude across all tiers and ERMs. Our alignment parameter control
sensitivity analysis indicates that these differences are primarily driven by environmental MP particle trait
distributions (e.g., size, shape, density) used in alignments, though some residual differences could be
attributed to inherent species sensitivity. The apparent greater sensitivity for marine species could
potentially be explained by the following: (1) marine species are more sensitive to microplastics than
freshwater species; (2) the MP characteristics to which we aligned the toxicity measurements had toxic
traits that were not accounted for with the alignments (e.g., presence of NIAS, etc.), with more toxic
particles used in marine environment studies; or (3) the number of species populating the SSDs were too
few to reliably detect differences (an effect documented in [121]). Unfortunately, insufficient information
is available at this time to determine which of the three explanations (or additional explanations) are
correct.

The strong influence of environmental MP particle traits on the thresholds underscores the
importance of using site-specific, high-resolution environmental data when applying this ERA framework.
The generic particle distributions used here (i.e., [24]) were selected for demonstration purposes, and it
is recommended that distribution data that most closely resembles the environment of interest (ideally,
site-specific monitoring data) be used to derive thresholds intended for risk characterization, when
possible [122]. MP sources and fate vary between systems, resulting in heterogeneous particle
distributions [123, 124]. For example, the power law exponents for particle lengths from [24] (2.07 in
marine surface waters for the Netherlands) differ substantially from values reported by [125] (2.67 in
marine environment), while the freshwater surface water values reported in [24] (2.6 in freshwater
surface waters for the Netherlands) are comparable to freshwater surface water values reported in [126]
(2.4-2.7 in the size range of 5 to 300 um for the St Louis Estuary and Western Lake Superior, USA).
Methodological differences could also partially explain these differences, as the sampling and analysis
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methods used in these studies were not identical, in addition to the data analysis technique used to derive
the values. Specifically, [24] applied maximum likelihood estimation (MLE) followed by bootstrapping -
avoiding size binning - while [126] and [125] used binned data. MLE-based approaches, by incorporating
all observations, are considered more robust for estimating underlying size distributions [127].

Influence of Individual Studies and Quality Criteria

Sensitivity analyses showed minimal impact from quality screening, as highly influential studies
remained. A few studies disproportionately influenced thresholds, with some changing by over an order
of magnitude (e.g., 83-fold for marine food dilution Tier 1). This is higher than Mehinto et al. [12]'s 4-fold
maximum. This volatility isn't due to more species in Tiers 1 and 2, but the framework itself: Tiers 1 and 2
use the 25th percentile toxicity value for a given species, while Tiers 3 and 4 use the median. Additionally,
Tier 1 is based on the 5th percentile confidence interval of the modelled SSD, resulting in expected high
volatility.

Lower tier thresholds are more impacted by individual studies partly due to the inclusion of sub-
organismal endpoints, unlike upper tiers (organismal and population-level only). This explains the high
influence of [58] on marine thresholds, which reported lysosomal, neurological, and immunological effects
in mussels (Mytilus galloprovincialis) exposed to 1.5 ng/L (100 particles/L) 3 um PS spheres. However,
increased sensitivity at lower biological levels doesn't explain the 7 to 14-fold difference in freshwater
food dilution thresholds, where [59] reported intergenerational effects on water flea (Moina macrocopa)
survival at 100 ng/L (1 pm PS spheres).

The freshwater tissue translocation ERM, though generally more robust (2.7-3.7-fold change), was
heavily influenced by [74]. This study included fibers, which were more toxic than beads in the same
experiment and caused developmental deformities in Ceriodaphnia dubia, potentially due to
entanglement [74]. This raises uncertainties in applying the ERM-based framework, as effects from other
means (e.g., entanglement) might be misrepresented, given that food dilution and tissue translocation are
assumed for all theoretically bioaccessible particles. Such mixed modes of action underscore the value of
complementary approaches that explicitly integrate particle characteristics into SSD estimation. For
example, [128] applied a Bayesian hierarchical SSD framework to microplastics, demonstrating that
particle size and exposure medium (i.e., freshwater vs. marine) can be incorporated directly into hazard
modelling. Their findings highlight how trait-explicit SSDs may complement the ERM-based approach used
here, particularly when multiple mechanisms of toxicity may be operating simultaneously.

Conclusion

This study advances MP ERA by fully propagating uncertainty across all components of threshold
derivation. By integrating MC-based ERM alignments with a modified PSSD approach, we provide a
transparent and defensible framework for deriving MP hazard thresholds. Applied to the largest MP
toxicity database available to date (ToMEx 2.0), this framework enabled the generation of tiered
thresholds across marine and freshwater ecosystems, alongside detailed sensitivity analyses to assess the
influence of alighment parameters, data quality, and individual studies.
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ERM selection was the primary driver of threshold magnitude and uncertainty, with food dilution
ERMs producing more protective but less stable thresholds than tissue translocation ERMs. Differences
between marine and freshwater thresholds were driven largely by MP particle distributions rather than
species-specific sensitivities, underscoring the importance of incorporating site-specific environmental
data when applying this ERA framework.

PSSD++ thresholds - which incorporate alignment uncertainty, intraspecies variability, and
assessment-factor uncertainty - produced more realistic and precautionary estimates than deterministic
SSDs. However, additional research could further enhance the representativeness, precision, and
ecological realism of MP ERAs, including: 1) a toxicity database with broader representation of MP types
present in the environment (especially fibers, PP, PET, and tire wear particles); 2) high-quality
translocation studies reporting continuous uptake data across a wider range of MP traits (particularly
fragments, fibers, and surface-modified particles resembling biofouling conditions); 3) an updated ERA
framework that considers non-ingestion-based mechanisms of toxicity (e.g., entanglement from fibers),
the impacts of plastic-associated chemicals, and plastics as vectors for pathogens; and 4) generation of
additional high quality toxicity studies - ideally including replication studies of the highly influential studies
observed in this assessment.

Overall, this probabilistic ERA framework offers a scalable and transparent approach to MP
threshold derivation. Continued improvements in toxicity and monitoring data, as well as bioavailability
modelling, will further increase the trust and adoption of MP risk thresholds for use in environmental risk
assessment and management.
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Environmental Implication

This study introduces a novel probabilistic framework that propagates uncertainty across particle- and
species-specific alignments, toxicity mechanisms, and environmental compartments to derive
ecologically relevant hazard thresholds for microplastics. By integrating mechanistic endpoints and
Monte Carlo simulations at every stage of data harmonization, the approach provides a more
transparent and robust foundation for ecological risk assessment, with resulting thresholds being more
protective and realistic. The accompanying sensitivity analysis reveals which parameters contribute most
to uncertainty, highlighting key knowledge gaps and guiding future research priorities for more targeted
data generation and risk refinement.
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Highlights

e Novel probabilistic ERA framework (PSSD++) for microplastics thresholds

Integrated Monte Carlo uncertainty propagation into ERM alignments

Applied framework to TOMEx 2.0, the largest MP toxicity database

PSSD++ yields more precautionary but more uncertain thresholds

ERM choice dominates threshold uncertainty across environment
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