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Abstract 

Quantitative risk assessment for microplastics (MPs) is complicated by misalignments between 

environmentally relevant particles and those used in toxicity studies. Previous approaches addressed this 

using ecologically relevant metrics (ERMs) and species sensitivity distributions (SSDs), but did not 

propagate uncertainty from particle-trait alignments or intraspecies variability. Here, we present a novel 

probabilistic framework that propagates uncertainty through ERM alignments using Monte Carlo (MC) 

simulation, paired with a modified probabilistic SSD model (PSSD++). Using high-quality data from the 

updated Toxicity of Microplastics Explorer (ToMEx 2.0), we compared hazard thresholds derived by three 

approaches: traditional SSD, MC+SSD, and PSSD++. PSSD++ consistently produced the most health-

protective median thresholds and lowest 5th-percentile values, which generally exhibited the widest 

relative confidence intervals. MC+SSDs produced the narrowest uncertainty ranges. Uncertainty was 

greater for food dilution than for tissue translocation, and greater for freshwater environments than 

marine. Sensitivity analysis identified ERM-alignment parameters as the dominant drivers of threshold 

variability, contributing up to two orders of magnitude difference. This framework emphasizes the 

importance of propagating alignments uncertainty in MP risk assessments and highlights key research 

needs, including improved models for tissue translocation and more representative environmental 

particle characterizations. 

Keywords 
Microplastics; Probabilistic Risk Assessment; Hazard Characterization; Meta-Analysis; Ecotoxicology 

Highlights 
● Novel probabilistic ERA framework (PSSD++) for microplastics thresholds 

● Integrated Monte Carlo uncertainty propagation into ERM alignments 

● Applied framework to ToMEx 2.0, the largest MP toxicity database 

● PSSD++ yields more precautionary but more uncertain thresholds 

● ERM choice dominates threshold uncertainty across environment 

Glossary 
Acronyms 

● ABS – Acrylonitrile Butadiene Styrene 

● AICc – Corrected Akaike Information Criterion: model selection metric adjusted for small 

samples 

● DOM – Dissolved Organic Matter: natural organic compounds in water 

● ECx – Effect Concentration at x%: concentration causing x% effect (e.g., EC50) 
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● ERA – Ecological Risk Assessment: framework for evaluating potential adverse effects of 

contaminants 

● ERM – Ecologically Relevant Metric: particle- and species-specific measure of MP exposure 

effects 

● HCx – Hazard Concentration for x% of species: e.g., HC5 = protective for 95% of species 

● HONEC – Highest Observed No Effect Concentration 

● ICx – Inhibitory Concentration at x%: concentration at which x% inhibition occurs 

● LCx – Lethal Concentration at x%: concentration causing x% mortality 

● LHS – Latin Hypercube Sampling: efficient parameter space sampling method 

● MC – Monte Carlo: repeated random sampling method for probabilistic simulation 

● MLE – Maximum Likelihood Estimation: statistical method for parameter estimation 

● MP – Microplastic: plastic particles <5 mm in size 

● NIAS – Non-Intentionally Added Substances: impurities/byproducts in plastics 

● NOEC – No Observed Effect Concentration: highest concentration at which no adverse effects 

are observed 

● PA – Polyamide 

● PE – Polyethylene 

● PET – Polyethylene Terephthalate 

● PNEC – Predicted No Effect Concentration: threshold below which no adverse ecological effects 

expected 

● PP – Polypropylene 

● PS – Polystyrene 

● PSSD – Probabilistic Species Sensitivity Distribution: variant of SSD preserving species-specific 

variability 

● PSSD+ – Probabilistic Species Sensitivity Distribution Plus: adds uncertainty factors and chronic 

NOECs 

● PSSD++ – Modified PSSD+ used in this study, incorporating uncertainties from ERM alignments 

via MC simulations 

● PTFE – Polytetrafluoroethylene 

● PUR – Polyurethane 

● PVC – Polyvinyl Chloride 

● RCI – Relative Confidence Interval: (95th percentile – 5th percentile) / median 

● SSDs – Species Sensitivity Distributions: represent variation in species sensitivity to a stressor 

● ToMEx 2.0 – Toxicity of Microplastics Explorer v2.0: expanded MP toxicity database 

Field-Specific Terms and Definitions 

● Allometric Model – Relates organism traits (e.g., body size) to physiological metrics 

● Bioaccessibility – Fraction of MPs that can be absorbed based on size, shape, species 

● Bootstrapping – Resampling method for estimating distribution uncertainty 

● Eco-corona – Biomolecule layer on MP surfaces affecting behavior and toxicity 

● Empirical SSD – SSD built from raw, untransformed toxicity data 

● Entanglement – Physical hazard mechanism where fibers trap/interfere with organisms 

● Filter Feeders / Deposit Feeders – Feeding strategies affecting MP exposure pathways 

● Fluorescent/Raman Spectroscopy – Techniques to detect MPs via light interactions 

Jo
ur

na
l P

re
-p

ro
of



 

4 

● Granuloma – Localized inflammation from persistent particles like MPs 

● Power Law Exponent – Describes frequency-size relationship of particles 

● Smoothed Distribution – Continuous approximation of probability density 

● Step-Function Distribution – Piecewise approximation for empirical distributions 

● Translocation – Movement of particles from gut to tissues/circulatory system  
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Introduction 
 

Microplastics (MPs), generally defined as plastic particles smaller than 5 mm [1, 2], represent a 
diverse and complex class of contaminants [3]. Their increasing prevalence, persistence, and 
bioavailability are raising significant concerns amongst governmental bodies [4, 5, 6]. This has led to 
increased pressure to develop a reliable, transparent ecological risk assessment (ERA) framework to 
inform effective risk management for decision-making. Despite recent advancements, significant 
challenges persist in MP ERA frameworks, particularly in accurately representing the diverse 
characteristics and behaviors of these contaminants. 

A key challenge in MP ERA frameworks is the mismatch between exposures in hazard studies and 
actual environmental exposures. Discrepancies exist in particle size, shape, density, polymer types, 
chemical composition, and eco-coronas [7, 8, 9]. Methods have been developed to align MP exposure and 
effect data based on particle traits, enabling ERAs despite differing particle distributions [10, 11]. This 
alignment-based approach, combined with species sensitivity distributions (SSDs), informed MP 
management thresholds in aquatic ecosystems using toxicity data published <2021 [12]. However, 
confidence in these thresholds is low-medium due to limitations in underlying hazard studies, including 
limited environmental relevance of particles used (mostly monodisperse spheres or fragments), few 
studies meeting quality criteria, and insufficient toxicity mechanistic understandings [12]. Additionally, 
quantifiable uncertainties from alignments were not fully characterized, as models relied on single, 
deterministic values rather than complete probability distributions. These uncertainties limited their 
applicability in environmental risk management decisions, such as the risk characterization and regulatory 
decision for San Francisco Bay waterbodies adopted by the California State Water Resources Control 
Board [13, 14]. 

Thanks to the recent update of the MP toxicity database used in the ERA approach employed by 
[12] some uncertainties in MP ERAs may now be reduced. The updated Toxicity of Microplastics Explorer 
version 2.0 (ToMEx 2.0) database addresses some of the previous limitations, containing over twice the 
data of its predecessor. It features greater diversity in particle traits (e.g., approximately 370 additional 
fiber data points and 8 new polymers), along with 26 new freshwater and 32 new marine species [15]. 
Furthermore, adding a significant number of freshwater species enablesenables thederivation of 
thresholds for marine and freshwater environments separately.  

Another limitation of the ERA method employed by [12] and others lies in the dependence of SSDs 
on modelling the variation of species sensitivities to MP exposure. While the SSD approach has been used 
to derive environmental quality standards since the 1980’s in the United States and Europe [16, 17], they 
have been criticized for their reliance on theoretical distributional assumptions that ignore a prior 
distribution of raw biological responses - and likely misrepresent the variability in biological responses 
[18], in addition to collapsing species-specific data into single deterministic values - obscuring 
uncertainties and intraspecies/interlaboratory variability [19, 18]. Analysis of large ecotoxicity databases 
demonstrate that this ‘intertest variability’ alone contributes roughly a threefold spread in effect 
concentrations, yet standard SSD practices average out this variability, confounding test-level noise with 
true interspecies differences [20]. To address these limitations, the probabilistic species sensitivity 
distribution (PSSD) method was developed. PSSD involves generating a probabilistic toxicity distribution 
for each species, which are then combined into an SSD for a specific ecosystem, preserving raw biological 
variability and distributions [21]. The PSSD has been further refined to incorporate probabilistic elements 
related to uncertainty factors, harmonizing toxicity endpoints into chronic, no-effect concentrations 
(NOECs) [22]. This 'PSSD+' method has been applied to MPs [23], but it has not yet incorporated non-
alignment uncertainties into its model framework. 
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Here, we present an enhanced mechanistic ERA framework for MPs to both improve the reliability 
of threshold derivation and populate the assessment with the best available toxicological and 
environmental data. This framework probabilistically incorporates uncertainties in bioaccessibility, 
environmental particle distributions, inter-laboratory variability, and uncertainty factors through Monte-
Carlo (MC) simulations, which we refer to as a PSSD++. We demonstrate the application of this PSSD++ 
approach using quality-screened toxicity studies from the ToMEx 2.0 database for freshwater and marine 
environments for both food dilution and tissue-translocation-mediated effect mechanisms (environments 
and ERMs treated separately), and provide sensitivity analyses to identify influential parameters and 
better understand the multi-dimensional nature of the assessment. Last, we assess the 
representativeness of the MP toxicity data through comparison to environmental occurrence data we 
extracted from the literature. The application of this framework here is provided as a detailed proof-of-
concept, and it is recommended that further applications be applied using site-specific environmental 
particle distribution data, amongst other considerations (e.g., inclusion/exclusion of species; biological 
organization of endpoints included; etc.). 

Materials and Methods 

Hazard Data 
 This study utilized aquatic ecotoxicity data from the ToMEx 2.0 database, a publicly available 
dataset containing approximately 13,000 data points extracted from nearly 300 studies [15]. This dataset 
includes annotations for quality criteria, initially developed by [10] and refined in [12]. We applied the 
same filtering criteria as in [12] based on quality, biological organization (population, individual, tissue, 
cellular, subcellular), and organismal groups (e.g., plants, algae, fish), according to the relevant threshold 
tier (i.e., tiers 1 – 4), which progress from highly protective assumptions based on all biological endpoints 
to more predictive, higher-confidence thresholds based on organismal- and population-level endpoints) 
and ecologically relevant metric (ERM) (supplemental information).  

Unlike conventional chemicals, ERMs for plastic debris are not single concentrations (e.g., mg/L). 
Instead, they represent particle- and species-specific effect mechanisms, encompassing physical 
characteristics (e.g., size, shape, density) and chemical composition relevant to the environment [7]. 
Consistent with [12], we focused on ‘food dilution’ and ‘tissue-translocation-mediated effects’ as ERMs. 
Only data with defined effect metrics (i.e., NOECs, lowest observed effect concentrations [LOECs], effect 
concentrations [ECx], inhibitory effect concentration [ICx], and lethal effect concentrations [LCx]) were 
used. IntermediaryI exposure concentrations thatthat did not specify a dose-response point (e.g., 
concentrations reported between LOECs and ECx/LCx values) and highest observed no effect 
concentrations (HONECs) were excluded [12]. Aligning toxicity data to ERMs requires particle-level 
environmental monitoring data, for which we used the freshwater and marine surface water data 
published by [24]. This dataset is restricted to particles ≥ 1 µm, so we only aligned hazard data that 
exposed organisms to particles ≥ 1 µm. Following [12], only particle-based studies were used – with 
studies involving the addition of sorbed and/or dissolved chemical toxicants excluded. Further details on 
ToMEx 2.0 and the threshold population methods for freshwater and marine environments can be found 
in [12] and [15], as well as in the supplemental information. 
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Occurrence Data 
To evaluate how representative the MPs in the ToMEx 2.0 toxicity dataset are of environmental 

conditions, we compared their particle traits and relative abundances to those found in marine and 
freshwater environments. We conducted targeted literature searches for environmental datasets (i.e., 
Zenodo, Mendeley Data; search term: “microplastics,” searched March–May 2024) and published 
summaries (i.e., Google Scholar, searched July 2024) reporting MP characteristics. For each sample or site, 
we extracted the proportions of different polymer types (grouped into polyethylene/polyethylene 
terephthalate/polyester [PE/PET/Polyester], polypropylene [PP], polystyrene [PS], polyamide [PA], 
polyurethane [PUR], polyvinyl chloride [PVC], polytetrafluoroethylene [PTFE], and others), shapes 
(spheres, fragments, fibers), and average particle lengths and widths. These traits were selected because 
they are most commonly reported and used in ERM alignments. PE, PET, and polyester were grouped, as 
they were already pooled in most source studies. Other characteristics known to influence toxicity—such 
as biofouling [25], surface charge [ 26, 27], chemical composition including additives and non-intentionally 
added substances (NIAS) [ 28, 29], and surface functional groups [ 30, 31]—were not included, as they 
were rarely reported. Where available, raw data were used; otherwise, values were extracted from figures 
using the R package metaDigitise [32]. 

In total, we compiled MP trait data from 87 environmental samples (53 freshwater, 36 marine) 
across 12 published sources [ 33, 34, 35, 24, 36, 37, 38, 39, 40, 41, 42, 43] (see Excel table in supplementary 
information). We compared these environmental MP characteristics to those in ToMEx 2.0 using non-
metric multidimensional scaling (NMDS), a technique for visualizing complex multivariate data in reduced 
dimensions [44]. As we did not apply quality screening (e.g., [45]) to the environmental data, these 
comparisons may be influenced by unassessed study biases. 

Tissue Translocation Bioaccessibility Modelling 
We identified studies in ToMEx 2.0 that determined whether or not tissue translocation of MPs 

occurred in exposed organisms, and extracted information associated with MP physical characteristics for 

each species. Tissue translocation observations were often reported as binary (i.e., translocated or not), 

and in the case of the three studies that reported percentages of administered particles translocated, any 

amount greater than zero was considered as translocated for the purposes of this assessment. Data from 

these studies were used to model the probability of tissue translocation for MPs based on particle length 

using binomial logistic regression, with the logit link function: log(p / [1-p]) = β₀ + β₁X₁, where p is the 

probability of the event occurring, β₀ is the intercept, β₁ is the regression coefficient, and X₁ is 

particleparticle length. To estimate the uncertainty in the threshold particle length associated with a 50% 

probability of translocation, we used bootstrap resampling (n = 10,000 simulations). 

Ecotoxicological threshold modelling 
Two novel approaches were developed and applied here to derive MP ecotoxicological thresholds 

in this study, and were compared to the traditional SSD-based approach developed previously in [12] (with 

the correction described in [46]). All three approaches used the ERM-based alignment approach described 

in [12]((with the minor modification for polydisperse mixture bioaccessibility modelling described in the 

supplementary information and in [15]) and apply identical tier filters, ERM definitions, and size ranges (1 

to 5,000 µm). 

The four-tier threshold framework applied here follows [12], where each tier applies a different 

set of biological filters and species-level data-collapsing rules, producing a protective-to-predictive 
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gradient of thresholds. Tiers 1 and 2 (“protective” tiers) include all biological levels of organization and 

collapse multiple toxicity values for each species to the 1st quartile. Tiers 3 and 4 (“predictive” tiers) 

restrict inputs to organismal- and population-level endpoints and collapse species data to the median. The 

lower three tiers use the HC5, but Tier 1 differs in that the threshold is taken as the lower 5th-percentile 

confidence bound of the SSD rather than the median HC5 estimate. Tier 4 uses the HC10 to reflect 

increased confidence in higher-level biological responses. 

The two novel approaches handled these ERM uncertainties probabilistically (Table 1). 

MethodMethod 1 (MC+SSD) applies the full ERM/SSD-based workflow from Thornton-Hampton et al. [15] 

butbut introduces MC simulations to propagate uncertainty in bioaccessibility limits and environmental 

particle-trait distributions.Method 2 (PSSD++) uses the same MC-aligned dataset as Method 1 but replaces 

SSD fitting with a modified PSSD+ framework that also propagates intraspecies variability and assessment-

factor uncertainty (Table 1).  

All modelling components are linked through a unified sequential workflow: bioaccessibility 

models provide ingestion and tissue-translocation limits; these limits and particle-trait distributions are 

used to align each toxicity value to its ERM; and the aligned dataset (either single-value or MC-propagated) 

is then passed to the selected threshold-modelling method (traditional SSD, MC+SSD, or PSSD++). Only 

the MC methods propagate uncertainty in bioaccessibility and ERM alignment; the traditional SSD method 

retains deterministic alignments. For each environment, tier, and ERM, we calculated relative confidence 

interval widths (RCI = (95th–5th percentile)/median) as a standardized measure of uncertainty [47].  

Method 1 (MC+SSD): 

Method 1 combines MC simulations for uncertainty propagation on alignments with SSD 

threshold derivation, as in [12]. SSDs for unique ERM, threshold tier, and environment combinations were 

derived for each MC simulation, forming distributions of threshold values that represent alignment 

uncertainty. This differs from [48] by probabilistically treating all parameters (instead of just power law 

values). 

Latin Hypercube Sampling (LHS) was used to construct probability distributions for MC ERM 

alignments, ensuring efficient and uniform sampling across multidimensional parameter space. LHS, 

which is advantageous for complex models and recommended for microplastics [, 49, 50], utilized the 

sobol_matrices() function from the sensobol R package [51] to generate a Sobol sequence. This sequence 

yielded 589 samples across 16 parameters, totaling 9,423 simulations, with each parameter transformed 

into its respective probability distribution. 

Environmental MP probability distribution data for ERM alignments, as in [12], came from [24]. 

Alpha power law values were sampled from normal distributions based on [24] mean and standard 

deviation, while length-width ratios were sampled from a truncated normal distribution [24] with 

bounds of 0.0001 to 1. Bioaccessibility limits were based on a pre-existing ingestible size model and a 

derived tissue translocation logistic regression model. Ingestion bioaccessibility used the [52] allometric 

model, with Beta and Intercept values sampled from normal distributions (means/standard errors: 

0.9341 ± 0.1376; 1.1200 ± 0.3222, respectively, from their codebase). Species- and life stage-specific 

body lengths from [15] were used. Tissue translocation bioaccessibility limits were estimated by deriving 

the particle length associated with a 50 % probability of translocation from the fitted logistic regression 
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model described above by solving for the midpoint (-𝛽0/𝛽1).) To capture uncertainty, MP particle 

lengths were sampled from the fitted regression model by generating normal distributions forfor the 

logistic regression's intercept (𝛽1) and slope (𝛽0) parameters using their associated standard errors. 

Values outside 1-500µm were removed for biological plausibility and consistency with the 1µm default 

lower limit, resulting in a heavily right-skewed truncated ratio distribution (Figure 1). 

All probability distribution parameters are in Table S4 and visualized in Figure 1. To reduce 

extreme outlier influence, z-scores were calculated for thresholds per environment/tier/ERM. Values 

with |z-score| > 3 were removed (0.01% to 2.2% occurrence; Table S6). 

 

Figure 1. Distributions of ERM alignment and re-scaling parameters used in MC simulations. (A) Power 

law (alpha, unitless) values for particles (i.e., length, mass, volume, and surface area), and particle length 

to width ratios (unitless scale from 0 to 1) are environment-specific (dark blue = marine, light blue = 

freshwater), are from [24]. (B) Values used to estimate mouth size openings of organisms based on their 

body lengths using the allometric equation derived in [52]. The tissue translocation size values represent 

the sizes of microplastics (µm) with a predicted 50% probability of translocating tissues based on the 

generalized linear model with the lowest AICc (i.e., logistic regression; binary translocation ~ particle 

length; see supplementary information). All species, life stages, organism groups, environments, 

polymers, and shapes were included in the generalized linear model used to estimate translocatable 

microplastic particle sizes. The distribution of values was generated from 10,000 simulations. 
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Method 2: Probabilistic Species Sensitivity Distribution (PSSD)++ 

Method 2 (PSSD++) combines MC-aligned toxicity values (from Method 1) with a modified PSSD+ 

approach. Unlike standard SSDs, PSSD(++) uses MC simulations to estimate uncertainty for each species' 

mean, considering data distribution, inter-laboratory variation, and assessment factors (exposure time, 

dose descriptors). While SSDs assume a community response distribution(e.g., log-logistic, log-normal, 

etc.) [53], PSSD(++) uses an empirical approach, avoiding the issue of communities not following single 

distributions [21, 53 54]. 

We further modified PSSD+ to incorporate variability from ERM alignments derived 

probabilistically from the MC simulations for each species/environment, rather than a blanket intra-

laboratory coefficient of variation (i.e., 0.3 as applied in [22]). Our approach resulted in intraspecies 

coefficient of variation values ranging between 0.08 to 2.7, with wider variability when aligning to food 

dilution than to tissue translocation ERMs (see supplemental information for details). We also addressed 

two technical issues enabling derivation of tiered thresholds and incorporation of large MC datasets 

(details in Supplementary Information). We only applied this approach to tiers 3 and 4 of the [12] 

framework, as tiers 1 and 2 collapse species-level data to a single point estimate (1st quartile), which 

precludes the probabilistic species-level distributions required by the PSSD++ method. 

MC simulations on an Intel Core i7 with 64 GB RAM (12 cores) took approximately 5 hours to 

generate SSD-based thresholds, utilizing LHS for efficient sampling and robust uncertainty propagation. 

PSSD++ generations, using single-threading on the same system, took about 40 minutes per 

environment/ERM, totaling 2.7 hours. Due to RAM limitations, 300 PSSD++ simulations were run per 

analysis, rather than the typical 10,000 as employed in [21] and [55], which was deemed sufficiently stable 

after iterative analyses. 

Table 1. Comparison of the traditional Species Sensitivity Distribution (SSD) method (as applied in [12]) 

with the two novel probabilistic approaches developed in this study (i.e., Monte Carlo [MC] + SSD and 

probabilistic SSD [PSSD++]). ERM = ecologically relevant metric; AF = assessment factor; HCx = hazard 

concentration for x% of species. 

Feature ↓ Method → Traditional SSD [12; 15] MC+SSD PSSD++ 

Uncertainty treatment 

Deterministic; no 

propagation of ERM-

alignment uncertainty 

Probabilistic via MC sampling 

of alignment parameters 

Probabilistic; incorporates 

uncertainty in ERM alignments, 

intraspecies variability, and 

species-level aggregation 

Distributional 

assumption(s) 

Parametric SSD (e.g., log-

logistic/log-normal, etc.) 

Parametric SSD (e.g., log-

logistic/log-normal, etc.) 

MC-generated SSD 

(nonparametric) 

Alignment inputs (i.e., 

ERM, bioaccessibility 

limits, particle traits) 

Single-value alignment  
MC-propagated alignment 

distributions 

MC-propagated alignment 

distributions 
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Species-level 

representation 

1 point per species (tier-

dependent) 

1 point per species per MC 

simulation (also tier-

dependent) 

Full distribution per species 

(propagated variability + 

alignment + AF uncertainty) 

Assessment factor 

(AF) treatment 

Deterministic; fixed AFs 

applied directly 

Deterministic AFs applied 

(after MC) 

Probabilistic; AF uncertainty 

incorporated into species-level 

MC distributions 

Output 
HCx with 95% CI reflecting 

parametric SSD uncertainty 

Distribution of HCx reflecting 

combined alignment and 

parametric SSD uncertainties 

Distribution of HCx reflecting 

alignment, species-level, and AF 

uncertainties 

 

Sensitivity Analyses 

We conducted four sensitivity analyses on thresholds to understand alignment 

multidimensionality, disentangle species and environmental sensitivities, determine individual study 

influence, and evaluate study quality filters. We performed a one-at-a-time sensitivity analysis using MC 

simulation to explore the influence of ERM-alignment parameters, visualizing relationships with 

hexagonal density scatterplots for representative Tier 2 freshwater and marine thresholds. We also 

assessed whether marine or freshwater species are inherently more or less sensitive by generating 

thresholds using freshwater species while holding other parameters constant (e.g., using marine 

environmental microplastics distribution data). A leave-one-out sensitivity analysis determined individual 

study influence, systematically removing studies and recalculating thresholds, as a single data point can 

disproportionately affect HC values. Finally, we assessed the influence of quality filters (technical and risk 

assessment criteria from [12] using a leave-one-out approach on representative Tier 2 thresholds for both 

food dilution and tissue translocation ERMs in marine and freshwater environments. All leave-one-out 

sensitivity analyses were conducted relative to the default study/species filters for each tier, as described 

earlier.
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 Results 

Database coverage 

Organismal data covered in the ToMEx 2.0 dataset 

ToMEx 2.0 contains approximately an even split between toxicity data for freshwater and marine 
species, with 144 studies for freshwater species (n = 63 species; 6,555 data points), and 149 toxicity studies 
for marine species (n = 101 species; 6,243 data points). However, approximately 90% of all toxicity data in 
ToMEx 2.0 was not used in threshold modelling due to the data points failing one or more of the following 
conditions: the study did not meet minimum quality criteria from [12]; an inapplicability of species (e.g., 
plants and bacteria were not included); the exposure particles being outside of the default (i.e., 1 to 5,000 
µm) or bioaccessible (species/ERM-dependant) size range; or the effect metric being an intermediary 
exposure concentration or a HONEC. Specifically, just 16 studies for freshwater species (n = 10 species; 
140 data points), and 16 studies for marine species (17 species; 235 data points) were used for any of the 
four-tiered thresholds, with the majority of data points requiring some adjusting using uncertainty factors 
(i.e., to translate from acute to chronic, or from various effect metrics to NOECs), with 71% of marine data 
points and 84% of freshwater data points requiring a composite uncertainty factor between 2 and 100 for 
tiers 1 and 2 (Table S1). The proportions of chronic vs. acute studies was consistent for tiers 1&2 (36% 
chronic) and 3&4 (28% chronic) for freshwater species, while for marine species, proportions varied 
dramatically between these tiers (76% chronic for tiers 1&2; 27% chronic for tiers 3&4) (Table S1).  

While the overall amounts of data were comparable between environments, the representation 
of biological diversity was significantly greater for the marine thresholds, with 8 distinct organismal groups 
included in the marine thresholds, compared with just 3 for freshwater thresholds. Of the marine data 
used in any thresholds, there were 21 genera represented: Oryzias, Crustacea, Echinoderm, Mytilus, 
Diaphanosoma, Pseudechinus, Cnidaria, Hydra, Tigriopus, Ciliophora, Strombidium, Karenia, Rotifera, 
Brachionus, Pinctada, Paracentrotus, Crepidula, Tripneustes, Parvocalanus, Centropristis, Skeletonema. Of 
the freshwater data that we used in any threshold, there were only 7 genera represented: Daphnia, 
Ceriodaphnia, Moina, Hyalella, Oryzias, Oncorhynchus, Raphidocelis, Chlorella, and Danio. For biological 
levels of organization, the majority of the data for both freshwater and marine species were for individual-
level and sub-cellular responses (Figure 2). 
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Figure 2. Barplot showing microplastic hazard data used for threshold derivation in this study, faceted by 

environment and biological levels of organization. Organismal groups are separated in rows. Note that the 

x-axis is in log10 scale.  
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MP Particle Trait Hazard Data Representativeness 

A comparison was made between the characteristics of MPs used in toxicity tests (ToMEx 2.0) and 

those more commonly found in environmental samples (Figure 3). The NMDS analysis revealed differences 

between the MPs used in toxicity tests and those present in freshwater and marine environments (Figure 

3). It is important to note that, although the NMDS ordination plot is a useful visualization of these 

multivariate differences, the apparent proximity of some environmental samples to the ToMEx 2.0 

centroid primarily reflects the compression of high-dimensional particle-trait variation into two axes 

rather than true similarity to the spherical, polydisperse laboratory particles represented in the database.  

 

Figure 3. NMDS scatterplot demonstrating the representativeness of MP particle traits in ToMEx 2.0 

compared to MPs from environmental samples. MP particle trait data analyzed here included relative 

proportions of different polymer types, shapes (fragments, spheres, fibers), and size measures (mean 

length, median length, surface area). Triangles: full ToMEx 2.0 data, squares: ToMEx 2.0 data (quality score 

filtered), circles: environmental samples, light blue: freshwater, dark blue: marine. Arrows show increasing 

values for the respective particle characteristics. Arrow lengths reflect the strength of the association with 

the NMDS axes.  

Toxicity tests (full ToMEx 2.0 data) involving both marine and freshwater organisms were strongly 

associated with the use of spheres (34% of experiments) and fragments (39% of experiments), and PS 

(24% of experiments) and PE/PET/Polyester (43% of experiments) polymers. The relative abundances of 
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spheres and fragments, and PS and PE/PET/Polyester MPs in the environment were comparatively lower 

overall (median(spheres): 0%, range(spheres): 0-77%; median(fragments): 22 %, range(fragments): 0-94 %; median(PS): 

4%, range(PS): 0-69%; median(PE/PET/Polyester): 36%, range(PE/PET/Polyester): 0-100%). Conversely, PP (median 

proportion: 14%) was primarily associated with MPs from environmental samples but was largely absent 

from toxicity tests (6% of particles). Concerning particle size, the mean length and width of particles used 

in the toxicity tests was smaller (mean(length) ± SD: 250 ± 834 µm, mean(width) ± SD: 135 ± 481µm) than in 

environmental MPs (mean(length) ± SD: 596 ± 748 µm, mean(width) ± SD: 124 ± 233 µm, however these 

differences are likely due to monitoring artifacts - i.e., the size distributions of measured particles are 

highly influenced by the mesh sizes of filters used, and size limitations of the analytical method(s) used. A 

notable underrepresentation of fibers was observed in ToMEx 2.0, making up 10% of particles in marine 

studies and 7% of particles in freshwater studies (8% overall), in contrast to its predominance in 

environmental samples, with median proportions of 49% and 85% in marine and freshwater studies 

(overall median: 77%), respectively.    

Tissue Translocation Data Extraction and Modelling 

We identified 27 studies within the database reporting tissue translocation measurements in 

exposed organisms, comprising 54 unique observations (i.e., the unique combination of MP characteristics 

and species/tissues), with 36 confirmed observations of translocation, and 18 reported non-

translocations. The vast majority of studies used spheres (18), with a limited number using fragments (5) 

or fibers (4). Particle lengths in these studies ranged from 0.024 µm to 1,500 µm, with a median length of 

5.5 µm (mean length = 63 µm; 1st quartile: 0.25 µm, 3rd quartile: 60.8 µm). Polystyrene was the most 

commonly-used polymer in these studies (15), followed by polyethylene (4), unreported polymer types 

(4), polyamide (2), a proprietary composition from Cospheric (4), polyvinyl chloride (1), and polyester (1), 

with the remaining studies investigating a mix of polymers including acrylonitrile butadiene styrene, the 

natural polymer cotton, polyester, polyethylene terephthalate, polypropylene, polyethylene co-vinyl 

acetate, and polyacrylonitrile. Fish were the most commonly investigated species in these studies (19), 

followed by mussel (3), with the following species having just one study each: crab, crustacean, mollusk, 

oyster, and shrimp. Liver was the most commonly investigated tissue (5 studies), with the following tissues 

also reported (studies often reported translocation in multiple tissues): whole body, fillet, embryos, head, 

yolk sac, brain, eyes, ovaries, gonads, spleen, kidney, pancreas, circulatory system, cytoskeleton, muscles, 

and skin.  

The binomial logistic regression analysis of tissue translocation MP data revealed a significant 

inverse relationship between MP particle length and the probability of tissue translocation (Figure 4). 

Distinctions according to particle characteristics (e.g., polymers, shapes) or organismal traits (e.g., species, 

tissues, etc.) were not considered in these analyses due to the relatively small size of the dataset. 

Therefore, the association between particle size and translocation probability that we derived here was 

generalized across all particle types and organisms in our bioaccessibility modelling. MP particle length 

was a significant predictor of tissue translocation (logistic regression: z = ; p = 0.03; Figure 4). The model 

yielded an intercept (β₀) of 1.34 (SE = 0.40) and a slope coefficient (β₁) of -0.015 (SE = 0.0067) for particle 

length (µm), indicating that as particle length increases, the log-odds of translocation decrease. The root 

mean square error of this model was 0.53 log-odds units. The truncated ratio distribution of particle 

lengths at which there is a 50% probability of translocation across tissues derived using these parameters 
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was lognormal, with a median value of 88 µm, a mean value of 128 µm, an interquartile range of 62 to 

131 µm and a 95% confidence interval of 36 to 302 µm (Figure 4).  

 

Figure 4. The binomial logistic regression model was fit to MP tissue translocation data. The y-axis 

represents the probability of translocation, and the x-axis is the MP particle length (µm) (note the log10 

scale). The ribbon surrounding the regression line represents the 95% confidence interval. Individual data 

points for tissue translocation study findings (binary) are represented with red bars on top (in the case of 

translocation being demonstrated) and blue bars on the bottom (in the case of translocation not being 

demonstrated). 

Probabilistically-Derived Thresholds 

Thresholds derived using the three approaches—SSD, MC+SSD, and PSSD++—ranged from 1 × 10⁻⁵ 

to 137 particles/L for food dilution, and from 0.81 to 9,510 particles/L for tissue translocation-mediated 

effects across all tiers and environments (Table 2). While median threshold values were broadly in the 

same order across methods, SSD and MC+SSD results were within 20% of one another, whereas PSSD++ 

thresholds were consistently lower—by up to 2-fold—with the largest differences observed in marine 

environments (Table 2). 

Despite the similarity in medians, the methods diverged in how they captured uncertainty. SSD-

derived thresholds exhibited the widest relative confidence intervals (RCIs), except for Tier 3 freshwater 

food dilution, where PSSD++ had the highest RCI (Table S10; Figure 6). For all tiers and ERMs, the 5th 

percentile values were lowest for PSSD++, while its 95th percentile values were often intermediate—lower 

than SSD but higher than MC+SSD. Although this pattern might initially suggest that PSSD++ captures a 

broader range of uncertainty, the wider RCIs observed for SSD thresholds largely reflect uncertainty 
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introduced through parametric model fitting, especially in cases with limited species counts or wide intra-

species variability. By contrast, the PSSD++ approach relies on empirical species-level distributions rather 

than parametric SSD fits, which can reduce upper-tail variability and result in narrower RCIs despite 

propagating more process-level uncertainty. Additionally, the use of 300 PSSD++ simulations (due to RAM 

constraints)- fewer than the iteration counts typically employed in PSSD analyses- may limit sampling of 

the extreme tails and thus underestimate the full uncertainty range. Consequently, while PSSD++ 

thresholds for some cases (e.g., Tier 3 freshwater food dilution) varied substantially- up to 24-fold across 

the confidence interval (Table S8)- direct comparisons of RCI widths across methods should be interpreted 

cautiously. 

Threshold distributions from the PSSD++ method varied by ERM and environment but showed 

relatively minor differences across tiers (Figure 5; Figure 6; Figure S13A). Intra-species data availability and 

integrated variability varied significantly by species and environment, while remaining consistent across 

ERMs (Figure 5). Freshwater tissue translocation thresholds were highly positively skewed, with long left 

tails, while marine thresholds exhibited minimal skew. Kurtosis was highest for tissue translocation 

thresholds overall, especially in marine systems. Freshwater thresholds had higher RCIs (8 to 59) than 

marine thresholds (3 to 9) across ERMs and tiers. Among ERMs, food dilution thresholds had higher 

uncertainty (RCIs: 8 to 59) than tissue translocation thresholds (RCIs: 3 to 18) (Table S8). Within each ERM 

and environment, Tier 4 thresholds consistently showed lower RCIs than Tier 3, likely reflecting greater 

robustness of higher percentile (HC) values. Marine thresholds also showed a higher percentage of 

statistical outliers (±1.5 × IQR) than freshwater thresholds for both ERMs (Figure S5). 

In summary, while all methods yielded similar median thresholds, PSSD++ consistently produced 

the lowest medians and 5th-percentile threshold values, reflecting its more precautionary treatment of 

uncertainty. However, PSSD++ did not consistently show the widest uncertainty bounds; SSD-based 

thresholds generally had the largest RCIs, with PSSD++ exceeding them only in specific cases (e.g., Tier 3 

freshwater food dilution). This reflects differences in how uncertainty is estimated, as well as the limited 

number of PSSD++ simulations, which may constrain tail sampling. Despite consistent trends in thresholds 

between methods, results are not statistically different due to the relatively high variability in the 

underlying data. 

 

Table 2. Proposed four-tiered SSD-based ecotoxicological microplastics thresholds for freshwater and 

marine environments based on food dilution and tissue translocation-mediated effects ERMs derived 

using the traditional SSD-based approach [12; 15]; the MC+SSD approach, and the PSSD++ approach. 

Values represent median threshold values from the probabilistic assessment, with the values in 

parentheses corresponding to the 95% confidence intervals. Values are reported in particles/L (aligned to 

particle lengths of 1 to 5,000 µm). 

 Environment→ Marine Freshwater 

Tier ↓ ERM → 
Method ↓  

Food Dilution  Tissue 
Translocation  

Food 
Dilution  

Tissue Translocation  
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Tier1 
 (95% CI) 

SSDa 4.8x10-5 
(NA) 

0.82 
(NA) 

0.4 
(NA) 

93 
(NA) 

MC+SSDb 1.0x10-5 
 (1.0x10-5 to 1.0x10-4) 

0.81 
 (0.21 to 1.8) 

0.4 
(0.03 to 4) 

100 
(66 to 180) 

PSSD++c NAc NAc NAc NAc 

Tier2 
(95% CI) 

SSDa 2.6x10-3 
(4.8x10-5 to 1.1) 

13  
(0.82 to 380) 

4.9 
 (0.4 to 150) 

720 
 (93 to 23,000) 

MC+SSDb 2.6x10-3 
2.3x10-4 to 2.2 x10-2) 

13 
(6.4 to 30) 

4.1  
(0.34 to 38) 

710 
(460 to 1,100) 

PSSD++c NAc NAc NAc NAc 

Tier3 
(95% CI) 

SSDa 0.30 
(0.03 to 7.3) 

490 
(140 to 5,300) 

 

42 
(28 to 
2,400) 

4,800 
(1,900 to 54,000) 

MC+SSDb 0.28 
(0.029 to 2.2) 

480 
(160 to 1,200) 

36 
(3.4 to 250) 

4,600 
(2,000 to 6,700) 

PSSD++c 0.140 
(0.01 to 1.2) 

 

320 
(74 to 1,400) 

31 
(0.14 to 
1,500) 

2,150 
(167 to 38,000) 

 

Tier4 
(95% CI) 

SSDa 1.5 
(0.22 to 44) 

1,600 
 (430 to 
16,000) 

140 
 (63 to 
6,700) 

9,500 
(3,200 to 120,000) 

MC+SSDb 1.3 
(0.15 to 9.5) 

1,550 
(605 to 3,820) 

120 
(14 to 770) 

9,500 
(4,100 to 14,000) 

PSSD++c 0.64 
(0.081 to 5.0) 

710 
(190 to 2,500) 

140 
(6.3 to 
1,800) 

6,400 
(420 to 56,000) 

a95% confidence intervals for SSD-based thresholds are the bootstrap uncertainties of distributions fit to 

the species data at the HC5 for Tiers 2 and 3, and HC10 for Tier 4. Because Tier 1 is the lower 95% 

confidence interval of the SSD at the HC5, no further uncertainty estimates can be provided for that tier 

and this approach. 
b95% confidence intervals for MC+SSD-based thresholds represent the distribution values at those 

percentiles for the HC5/HC10 SSD values for the corresponding tier.  

cMedian values from PSSD++ values are presented, alongside the 5th and 95th percentiles at the 

HC5/HC10 in the PSSDs for Tiers 3 and 4, respectively. Since data collapsing is not applied in the PSSD++ 
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approach, values are not presented for Tiers 1 and 2 (which use the 1st quartile of each species’ data to 

populate their SSDs).  

 

 

Figure 5. Modified Probabilistic Species Sensitivity Distribution (PSSD++) of MPs for tissue translocation-

mediated effects (top row) and food dilution (bottom row) ERMs, for marine (left column) and freshwater 

(right column) ecosystems. Labels and colored points denote individual species with colors corresponding 

to their organismal group. Each NOEC for each species is plotted such that the median aligned value is 

darker and larger, with the distribution of aligned values from the MC simulation appearing smaller and 

with lighter shading. Values up to the 99.99th and 0.0001th percentile values from the MC-aligned 

datasets are visible. For data-rich species in which numerous studies were used, overlapping points 

demonstrate the low variability between the aligned values (e.g., Daphnia magna). The probabilistic 

distribution for each PSSD++ is shown with a black line.  
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Figure 6. MP PNEC values for Tier 3 are compared between different modelling methods for marine and 

freshwater ecosystems, and food dilution and tissue translocation ERM. PNECs derived using the two 

probabilistic modelling methods are shown with smoothed distributions, with blue denoting MC+SSD (i.e., 

“method 1”) and pink denoting PSSD++ (i.e., “method 2”). The traditional SSD-based approach is shown 

with a green point and error bars representing the 5th and 95th percentile values of the bootstrapped 

uncertainty for the SSD.  

Sensitivity Analyses 

Alignments 

The alignment sensitivity analysis revealed a strong influence of several MP particle characteristics 

used in the alignments, as well as bioavailability modelling parameters on the resulting thresholds, which 

varied according to ERM and environment. For food dilution, the power law for particle volume had the 

strongest influence on the thresholds for both marine and freshwater environments and exhibited a first-

order exponential-like positive relationship (Figure 7). The MP particle length-to-width ratio exhibited a 

weak, positive association with the resulting threshold (Figure 7). No apparent relationships were 

observed between other parameters that aligned toxicity values to the food dilution ERM and the resulting 

thresholds, including the ingestion bioavailability model parameters (Figure 7). 
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In the case of tissue translocation, the following parameters strongly influenced the resulting 

thresholds: tissue translocation bioavailability model size limit, surface area power law alpha value, and 

particle length-to-width ratio (with a stronger influence on freshwater thresholds than on marine) (Figure 

7). A strong inverse exponential relationship between the tissue translocation limit and threshold was 

present for the marine environment, with a noticeably weaker, somewhat linear relationship for the 

freshwater environment (Figure 7). For the surface area power law alpha value, there was a positive linear 

relationship with the resulting threshold. In the case of the length-to-width ratio of particles, no trend was 

observed with marine thresholds, however for freshwater there was a strong, positive, non-linear 

relationship (~3rd-degree polynomial) (Figure 7). The parameters involved in the allometric body length 

to plastic ingestion model had weak negative relationships to the threshold (Figure 7). 

 

Figure 7. Hexagonal density scatterplots of ERM alignment parameters and their influence on a 

representative tier of the ecotoxicological thresholds (i.e., Tier 3) for two ERMs, i.e., Food Dilution (left 

column) and Tissue Translocation-Mediated Effects (right column), derived from Marine (top row) and 

Freshwater (bottom row) environments. Each relevant parameter involved in the alignment/rescaling of 

the threshold is presented as a hexagonal density scatterplot. Values for each parameter are on the x-axis 

(alpha values and length-to-width ratios are unitless; tissue translocation size limit is measured in µms, 

and the body length to mouth size opening estimation parameters are in mm). The y-axis represents the 

threshold value measured in particles/L. Lighter colors indicate a higher density of obtained values (i.e., x 

and y) from the MC simulations, with the red dots indicating the median for a given x-y pair to illustrate 

trends. 
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Environment 

Marine toxicity thresholds were consistently lower than freshwater thresholds across all 

ERMs/tiers, with greater differences at lower tiers. For example, the marine food dilution threshold for 

tier 1 was ~40,000 times lower than its freshwater counterpart, compared to ~100 times lower for tier 4. 

Tissue translocation showed smaller differences between environments compared to food dilution, with 

the marine threshold being ~100 times lower for tier 1, and just ~6 times lower for tier 4.  

Sensitivity analysis revealed that alignment parameters primarily drove these differences, 

accounting for 1 to 2 orders of magnitude. Freshwater-aligned values were always higher. For instance, 

marine Tier 2 thresholds for food dilution (2.6x10-3 particles/L) and tissue translocation (13 particles/L) 

increased ~10 to 100 times when freshwater parameters were applied (0.25 and 110 particles/L, 

respectively). Even after controlling for alignment parameters, freshwater thresholds remained 1.3- to 

300-fold higher than marine thresholds, with differences inversely related to the tier. For example, when 

marine distribution parameters were used, freshwater species showed 300x higher food dilution and 19x 

higher tissue translocation thresholds for Tier 1, but only 4.3x and 1.3x higher for Tier 4, respectively. 

Studies and Quality 

The leave-one-out sensitivity analysis conducted on individual studies demonstrated varying 

sensitivities of thresholds by tier, ERM, and environment (Figure 8). Overall, thresholds for food dilution 

were more strongly influenced by individual studies than the thresholds for tissue translocation, and 

freshwater environments were relatively less volatile than marine thresholds. Leave-one-out sensitivity 

distributions were all strongly positively skewed, with the vast majority of studies (70%) having minimal 

influence by themselves on the thresholds (fold-change between -0.5 and +2). Across all threshold tiers, 

ERMs, and environments, there were a small number of studies that had strong influences. Specifically, 

15% of studies would increase the threshold by more than double when they were removed, with 2.4% of 

studies causing more than a +10-fold change (Figure 8). On the opposing end of the spectrum, there were 

7.8% of studies that would have caused the thresholds to decrease by more than one-half when removed 

(Figure 8). 

Freshwater tissue translocation thresholds were the least sensitive to the removal of a single 

study, with the most influential study on the low end being a ~30% lower Tier 4 (removal of Jaikumar et 

al. [56]’s Ceriodaphnia and Daphnia sp. study), and on the high end, a +3.7-fold change for Tier 1 (removal 

of Mizukami-Murata et al. [57]’s Raphidocelis subcapitata study) (Figure 8). Marine thresholds were far 

more sensitive to the removal of single studies, and had a maximum fold-change of +83 and +18 for food 

dilution (Tiers 1 and 2, respectively) and +15 for tissue translocation (Tier 1) when Capolupo et al. [58]’s 

study on Mytilus galloprovincialis is removed (Figure 8). Capolupo et al. [58]’s influence is substantially 

greater than all other studies for all thresholds, environments, and ERMs, with the next most influential 

studies overall being Kim & Rhee et al. [59]’s study on Moina macrocopa (+34-fold change for freshwater 

food dilution tier 1) and Richardson et al. [60]’s study on Pseudechinus huttoni (+12-fold change for marine 

food dilution tier 1). The marine food dilution threshold was also the most sensitive on the low end of the 

distribution, with the removal of Beiras et al. [61]’s study on Brachionus plicatilis, Tigriopus fulvus, and 

Paracentrotus lividus resulting in a -0.4-fold change for Tier 2. 
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Figure 8. Sensitivity analysis of ecotoxicological thresholds based on leaving one study out from the 

derivation at a time. Each point represents the fold-change of the threshold when a single study is 

removed (i.e.,[threshold without study/threshold with all studies] - 1). Points are jittered vertically to show 

the distribution of points. Minimum and maximum threshold values based on leaving a single study out 

are annotated with text. In all cases, the majority of studies have minimal influence on thresholds (i.e., 

fold change < 2); however, several tiers/environments/ERMs are highly sensitive to at least one study.  
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Discussion 
This is the first study to have propagated the uncertainties involved in the particle-associated ERM 

alignment-based approach to deriving thresholds for MPs. While the refined PSSD++ approach developed 

in this study represents a substantial improvement over traditional SSD-based methods for assessing 

hazards of MPs, particularly in its ability to propagate uncertainty of particle-associated ERM alignments, 

bioaccessibilities, intra-species variabilities, and assessment factors, several key limitations remain, which 

may be separated by unquantifiable and quantifiable uncertainties. The unquantifiable uncertainties stem 

from constraints in the underlying data rather than the analytical methodology itself. First, the ToMEx 2.0 

toxicological dataset, while the most comprehensive available, still underrepresents the diversity of MP 

characteristics present in natural environments. Second, the bioaccessibility model for tissue translocation 

could be more accurate by reducing simplifications that may not reflect biological complexity and 

addressing issues with the underlying studies. As a result, while the analytical framework itself is robust 

and flexible, its predictive power remains tightly coupled to the quality and representativeness of available 

input data. In contrast, quantifiable uncertainties and variabilities – driven by ERM alignments and 

propagated through our novel modelling process - are well characterized by the PSSD++ method, and 

comparisons with alternative modelling approaches highlight the advantages of probabilistic methods in 

capturing these sources of variability. 

Data representativeness 

Although the ERM alignment framework is designed to reduce dependence on raw particle 

characteristics used in toxicity tests- thereby mitigating some issues of representativeness- this approach 

only captures ingestion-related food dilution and tissue translocation effects [11, 12]. Many other 

mechanisms through which MPs influence toxicity, such as chemical leaching (e.g., [62, 63, 28]), particle 

charge and surface chemistry [64, 65, 66], eco-corona formation [7, 8, 67], weathering [68, 25, 69, 70, 71], 

and shape-dependent physical interactions (e.g., entanglement [72]), fall outside the two ERMs used here. 

Because these mechanisms can influence toxicity independently of the assumed ERMs, unrepresentative 

particle characteristics in toxicity studies reduce the reliability of derived thresholds even after alignment. 

Thus, understanding the extent and nature of these data gaps remains critical for evaluating the 

robustness and generalizability of our approach. 

The ToMEx 2.0 dataset reveals critical gaps and persistent inconsistencies between the 

characteristics of MPs used in laboratory toxicity tests and those found in aquatic environments [73]. 

Notably, differences in toxicities between polymers and shapes -if any- are poorly represented. For 

example, fibers may be more toxic than non-fibers [74, 75], and some polymers may be more toxic due to 

intentionally-added chemicals (e.g., bisphenol A, phthalates, 6PPD) or NIAS such as residual oligomers, 

monomers, industrial chemicals, pharmaceuticals, and pesticides [62, 63, 28]. While comprehensive 

testing of all polymers and formulations is neither feasible nor necessary [76], a more representative 

dataset of MPs to which organisms are exposed would improve risk assessment reliability. 
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Toxicity tests predominantly used PS particles, followed by PE, while other environmentally 

relevant polymers (PET, polyester, PP, PVC, PTFE) were underrepresented despite their prevalence and 

high production volume [77, 78, 79]. MPs from bio-based plastics were also underrepresented, despite 

their growing use [77, 80] and limited environmental data [81]. Tire wear particles containing synthetic 

rubbers and plasticizers were rarely tested (with just one study’s toxicity data used in this assessment 

[82]), despite their widespread presence [83]. 

Shapes of MPs in toxicity tests also diverged from environmental observations. Spheres were 

predominantly used, while fibers - highly abundant in natural environments - were rarely considered. This 

is concerning given fibers’ increased risk of entanglement and ingestion. Studies have reported the high 

prevalence of MP fibers ingested by organisms such as crustaceans [84], mussels [85], fish [86], and other 

taxa from both freshwater and marine environments. Fragments, more common in environmental 

samples than in toxicity tests, may elicit different biological responses due to their greater physical 

obstruction potential, enhanced gut disruption, their greater likelihood of internal laceration, and higher 

cellular toxicity from roughness [87, 88, 89].  

Particle size inconsistencies were also identified, which may influence uptake, tissue translocation, 

digestive transit, excretion, and toxicological outcomes [90, 91], underscoring the need for realistic size 

distributions that reflect environmental conditions to improve ecological relevance. While the alignments 

accounted for the bioaccessibility aspect to some extent, and the different size ranges used in experiments 

incorporated some size-specific toxicity differences, some differences may still remain. 

Beyond polymer type, shape, and size, the lack of weathering and other environmental modifiers 

limits ecological relevance. Features like dissolved organic matter (DOM) or biofilms—ubiquitous in 

nature—were rarely reported, especially in freshwater tests. These factors can alter MP behavior, 

bioavailability, and toxicity by influencing aggregation, surface charge, or interactions with contaminants 

[68, 25, 69, 70, 71]. Similarly, surface charges and functional chemical groups were considered in few 

studies, despite their influence on particle reactivity and toxicity [64, 65, 66].  

This updated framework did not address plastic-associated chemicals, including additives, NIAS, 

and sorbed chemicals, which can leach and cause toxicity [92]. Despite efforts to characterize these 

chemicals [28, 63] and model their transfer via MPs in food webs [93], a lack of chemical monitoring data 

hinders aquatic risk characterization [94]. The framework also did not consider plastics as vectors for 

pathogens, which can harbor and transport microorganisms and antibiotic-resistant bacteria [95, 96]. 

Future ERA frameworks should integrate risks from both particle-induced hazards and those from 

chemicals and pathogens. 

The availability and cost of commercial MPs, and challenges in manufacturing and 

characterization, likely contribute to discrepancies between MPs used in toxicity testing and those in the 

environment. Analytical limitations and costs also restrict surface charge and functional group 

characterization. This divergence underscores the need for future research to incorporate a broader, more 

environmentally realistic range of MP characteristics into experimental designs. Including diverse polymer 

types, shapes (especially fibers), realistic size distributions, and environmentally relevant conditions (e.g., 

DOM, biofilms) will enhance the ecological validity of toxicity assessments. 
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Tissue Translocation Modelling 

Translocation—the movement of particles from the digestive tract into tissues and potentially 

systemic circulation—is governed by particle traits (size, shape) and organism-specific factors like age and 

internalization mode [97, 98]. This study used a data-driven model to estimate size-dependent 

translocation probabilities, finding smaller particles to have higher uptake, and incorporated model 

uncertainty via MC simulations—an advance over previous single-value approaches. Below, we discuss 

the biological plausibility of this model and discuss its room for improvement to more accurately account 

for bioaccessibility via translocation. Principally, a more nuanced model implemented in our probabilistic 

framework could improve accuracy; however, the development of such a model is constrained by the 

limited studies reporting continuous translocation data, limited representation of the diversity of MP 

particle traits and biological organisms, and the lack of fit-for-purpose quality criteria to evaluate studies.  

The model’s biological plausibility is supported by mechanistic evidence: studies report MP 

translocation from 24 nm to 100 µm, with a median 50% probability at 88 µm – consistent with the 83 µm 

value derived in [12], which used the same modelling approach, but a smaller dataset for derivation. 

Submicron to micron-sized MPs can cross epithelial barriers via endocytosis, paracellular transport, or 

transcytosis through microfold cells [99, 100], though the maximum translocatable size is debated. The 

size limit for endocytosis varies by mechanism: clathrin- and caveolin-mediated endocytosis typically 

transport particles up to 200 nm and 50–100 nm, respectively [101, 102]; macropinocytosis can 

accommodate up to ~5 µm, and phagocytosis (by immune cells) can handle >20 µm [103]. Some studies 

report even larger particles crossing barriers [104, 105, 99, 106, 100], and field studies have observed 

translocation of particles up to 567 µm [107, 108, 109]. Granuloma formation may allow larger MPs to 

enter muscle tissue [106], but more research is needed. Since the tissue translocation limit is inversely 

related to threshold values, including larger MPs in the model may underestimate thresholds. 

The logistic regression model applies a binary size cutoff for translocation, which simplifies the 

continuous nature of biological uptake. However, using logistic regression with MC simulations to 

propagate uncertainty is a key improvement over prior methods (e.g., [12]), as it better captures biological 

variability. A binary model was used due to limited data: only 3 of 25 studies reported uptake percentages 

[106, 110, 87]. Future models could benefit from integrating organism-specific traits (e.g., gill presence, 

feeding mode such as filter, deposit, or predation), which influence exposure and uptake [111, 112], and 

consider multiple compartments such as the human physiologically based kinetic model developed in [50]. 

Currently, the model uses only size to predict translocation, not accounting for shape, surface 

charge, or modifications, due to the predominance of pristine spheres in the database (18 studies vs. 5 on 

fragments and 6 on fibers/mixes). Fibers may have distinct uptake/retention due to flexibility and slower 

gut passage [89]. Surface charge and modifications, often induced by weathering or bio/eco-coronas, can 

significantly affect translocation via endocytosis, phagocytosis, and paracellular transport [113, 114, 65, 

67]. As most studies used pristine particles, the model may underestimate environmental MP 

translocation. 
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Methodological challenges also complicate translocation assessment. Self-contamination is a 

major uncertainty, as MPs are pervasive in labs and can be introduced via air, clothing, or equipment [115], 

leading to false positives and overestimated translocation rates [116]. While lab exposures allow better 

contamination control, they remain susceptible to biases, especially with fluorescently labeled particles 

[117]. Detection methods (fluorescent/Raman microspectroscopy) must account for background 

fluorescence, spectral overlap, and detection limits [118]. Sample preparation (e.g., aggressive digestion, 

filtration) may also affect MP detection or distribution in tissues, introducing artifacts [119]. Developing 

quality criteria for translocation studies was beyond this study’s scope, but future work should address 

this. 

These findings highlight the complex interplay of MP traits, organismal factors, and environment 

in translocation. Incorporating model uncertainty yields more realistic probability distributions and robust 

threshold estimates, but further improvements are needed. Future research should standardize detection 

protocols, improve contamination controls, and expand datasets to refine models and enhance ecological 

risk assessments. Longitudinal studies on long-term accumulation and toxicokinetics of translocated MPs 

are also crucial for understanding broader ecological and human health impacts. 

Quantified Drivers of Threshold Magnitude and UncertaintyAcross all tiers, environments, and 

modelling approaches, three factors consistently shaped the magnitude and uncertainty of derived MP 

thresholds: (1) the ERM to which toxicity data were aligned, (2) the modelling framework used to 

propagate alignment and biological uncertainties, and (3) the environmental particle trait distributions 

used in the alignments. While analytically distinct, these factors are tightly interrelated, and considering 

them together provides clearer insight into the primary sources of variability in the resulting thresholds. 

ERMs 

Across all combinations of tiers, environments, and modelling approaches, the effect mechanism 

(i.e., ERM) had the most consistent influence on both the magnitude and relative uncertainty of the 

derived thresholds. As described above, food dilution thresholds were consistently lower than tissue 

translocation thresholds across all model types; however, this increased sensitivity was accompanied by 

greater normalized uncertainty, with food dilution thresholds exhibiting higher RCIs than their tissue 

translocation counterparts. This contrast is likely driven by differences in how bioaccessibility is modeled: 

food dilution thresholds depend on species-specific ingestion bioaccessibility estimates (i.e., using body 

length measurements from various sources, and the model from [52]), which introduce variability across 

both species and particle traits and includes a wide range of particle sizes (8 µm to 70,273 µm) whereas 

tissue translocation is based on a species-agnostic logistic model that uses a narrower and more stable 

size range (i.e., 88 µm or the mouth size opening - whichever is smaller), reducing the variability introduced 

by different rescaling values. 

Modelling Techniques 

While there were minimal differences in magnitude between thresholds derived using different 

modelling techniques, there were marked differences in their uncertainties. Probabilistic approaches 
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(MC+SSD and PSSD++) revealed clearer distinctions between ERMs, often showing non-overlapping 95% 

CIs where the traditional SSD-based method did not (a pattern that aligns with an earlier assessment in 

[12]). This suggests that these newer methods may be better suited for capturing the variability inherent 

in species response and bioaccessibility modelling by accounting for uncertainty due to alignments. In 

contrast, the environmental compartment (marine vs. freshwater) had a relatively smaller influence on 

normalized uncertainty, although marine thresholds were generally lower and slightly more variable in 

absolute terms. These results reinforce that ERM selection is the dominant factor shaping both the central 

estimates and the uncertainty distributions of MP hazard thresholds. 

Environments 

The environmental context (marine vs. freshwater) significantly influenced the magnitude and 

variability of derived MP thresholds. Unlike [12], which combined data due to limited sample size, the 

expanded ToMEx 2.0 database allowed for independent SSD development for each environment (with 

sufficient species, n ≥ 5; [120]). This enabled more tailored threshold derivation and investigation into 

species/parameter differences. While some studies hypothesize that marine thresholds can be 

extrapolated from freshwater data (e.g., [121]), our findings suggest that such extrapolation may be 

unreliable. Specifically, marine thresholds were consistently lower than freshwater thresholds by 

approximately 0.5 to 2.5 orders of magnitude across all tiers and ERMs. Our alignment parameter control 

sensitivity analysis indicates that these differences are primarily driven by environmental MP particle trait 

distributions (e.g., size, shape, density) used in alignments, though some residual differences could be 

attributed to inherent species sensitivity. The apparent greater sensitivity for marine species could 

potentially be explained by the following: (1) marine species are more sensitive to microplastics than 

freshwater species; (2) the MP characteristics to which we aligned the toxicity measurements had toxic 

traits that were not accounted for with the alignments (e.g., presence of NIAS, etc.), with more toxic 

particles used in marine environment studies; or (3) the number of species populating the SSDs were too 

few to reliably detect differences (an effect documented in [121]). Unfortunately, insufficient information 

is available at this time to determine which of the three explanations (or additional explanations) are 

correct. 

The strong influence of environmental MP particle traits on the thresholds underscores the 

importance of using site-specific, high-resolution environmental data when applying this ERA framework. 

The generic particle distributions used here (i.e., [24]) were selected for demonstration purposes, and it 

is recommended that distribution data that most closely resembles the environment of interest (ideally, 

site-specific monitoring data) be used to derive thresholds intended for risk characterization, when 

possible [122]. MP sources and fate vary between systems, resulting in heterogeneous particle 

distributions [123, 124]. For example, the power law exponents for particle lengths from [24] (2.07 in 

marine surface waters for the Netherlands) differ substantially from values reported by [125] (2.67 in 

marine environment), while the freshwater surface water values reported in [24] (2.6 in freshwater 

surface waters for the Netherlands) are comparable to freshwater surface water values reported in [126] 

(2.4-2.7 in the size range of 5 to 300 μm for the St Louis Estuary and Western Lake Superior, USA). 

Methodological differences could also partially explain these differences, as the sampling and analysis 
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methods used in these studies were not identical, in addition to the data analysis technique used to derive 

the values. Specifically, [24] applied maximum likelihood estimation (MLE) followed by bootstrapping - 

avoiding size binning - while [126] and [125] used binned data. MLE-based approaches, by incorporating 

all observations, are considered more robust for estimating underlying size distributions [127]. 

Influence of Individual Studies and Quality Criteria 
Sensitivity analyses showed minimal impact from quality screening, as highly influential studies 

remained. A few studies disproportionately influenced thresholds, with some changing by over an order 

of magnitude (e.g., 83-fold for marine food dilution Tier 1). This is higher than Mehinto et al. [12]'s 4-fold 

maximum. This volatility isn't due to more species in Tiers 1 and 2, but the framework itself: Tiers 1 and 2 

use the 25th percentile toxicity value for a given species, while Tiers 3 and 4 use the median. Additionally, 

Tier 1 is based on the 5th percentile confidence interval of the modelled SSD, resulting in expected high 

volatility. 

Lower tier thresholds are more impacted by individual studies partly due to the inclusion of sub-

organismal endpoints, unlike upper tiers (organismal and population-level only). This explains the high 

influence of [58] on marine thresholds, which reported lysosomal, neurological, and immunological effects 

in mussels (Mytilus galloprovincialis) exposed to 1.5 ng/L (100 particles/L) 3 µm PS spheres. However, 

increased sensitivity at lower biological levels doesn't explain the 7 to 14-fold difference in freshwater 

food dilution thresholds, where [59] reported intergenerational effects on water flea (Moina macrocopa) 

survival at 100 ng/L (1 µm PS spheres). 

The freshwater tissue translocation ERM, though generally more robust (2.7-3.7-fold change), was 

heavily influenced by [74]. This study included fibers, which were more toxic than beads in the same 

experiment and caused developmental deformities in Ceriodaphnia dubia, potentially due to 

entanglement [74]. This raises uncertainties in applying the ERM-based framework, as effects from other 

means (e.g., entanglement) might be misrepresented, given that food dilution and tissue translocation are 

assumed for all theoretically bioaccessible particles. Such mixed modes of action underscore the value of 

complementary approaches that explicitly integrate particle characteristics into SSD estimation. For 

example, [128] applied a Bayesian hierarchical SSD framework to microplastics, demonstrating that 

particle size and exposure medium (i.e., freshwater vs. marine) can be incorporated directly into hazard 

modelling. Their findings highlight how trait-explicit SSDs may complement the ERM-based approach used 

here, particularly when multiple mechanisms of toxicity may be operating simultaneously. 

Conclusion 

This study advances MP ERA by fully propagating uncertainty across all components of threshold 

derivation. By integrating MC-based ERM alignments with a modified PSSD approach, we provide a 

transparent and defensible framework for deriving MP hazard thresholds. Applied to the largest MP 

toxicity database available to date (ToMEx 2.0), this framework enabled the generation of tiered 

thresholds across marine and freshwater ecosystems, alongside detailed sensitivity analyses to assess the 

influence of alignment parameters, data quality, and individual studies. 
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ERM selection was the primary driver of threshold magnitude and uncertainty, with food dilution 

ERMs producing more protective but less stable thresholds than tissue translocation ERMs. Differences 

between marine and freshwater thresholds were driven largely by MP particle distributions rather than 

species-specific sensitivities, underscoring the importance of incorporating site-specific environmental 

data when applying this ERA framework. 

PSSD++ thresholds - which incorporate alignment uncertainty, intraspecies variability, and 

assessment-factor uncertainty - produced more realistic and precautionary estimates than deterministic 

SSDs. However, additional research could further enhance the representativeness, precision, and 

ecological realism of MP ERAs, including: 1) a toxicity database with broader representation of MP types 

present in the environment (especially fibers, PP, PET, and tire wear particles); 2) high-quality 

translocation studies reporting continuous uptake data across a wider range of MP traits (particularly 

fragments, fibers, and surface-modified particles resembling biofouling conditions); 3) an updated ERA 

framework that considers non-ingestion-based mechanisms of toxicity (e.g., entanglement from fibers), 

the impacts of plastic-associated chemicals, and plastics as vectors for pathogens; and 4) generation of 

additional high quality toxicity studies - ideally including replication studies of the highly influential studies 

observed in this assessment. 

Overall, this probabilistic ERA framework offers a scalable and transparent approach to MP 

threshold derivation. Continued improvements in toxicity and monitoring data, as well as bioavailability 

modelling, will further increase the trust and adoption of MP risk thresholds for use in environmental risk 

assessment and management.  
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Declarations 
Scott Coffin reports a relationship with The Moore Institute for Plastic Pollution Research that includes: 

board membership. The following authors have nothing to declare: Luan de Souza Leite, Win Cowger, 

Lidwina Bertrand, Kazi Towsif Ahmed, Andrew Yeh, Mariella Siña, Stephanie Kennedy, Bethanie Carney 

Almroth, Ezra Miller, Anna Kukkola, Andrew Barrick 

Author Contributions: CRediT 
Scott Coffin: Conceptualization; Methodology; Software; Formal Analysis; Investigation; Data Curation; 

Writing- Original Draft; Writing - Review & Editing; Visualization; Project Administration 

Luan de Souza Leite: Writing- Original Draft; Writing - Review & Editing; Visualization 

Win Cowger: Software; Formal Analysis; Investigation; Data Curation; Writing - Review & Editing 

Lidwina Bertrand: Data Curation; Writing- Original Draft; Writing - Review & Editing. 

Stephanie Kennedy: Project Administration; Writing - Review & Editing 

Kazi Towsif Ahmed: Writing- Original Draft; Writing - Review & Editing; Visualization 

Andrew Yeh: Writing - Review & Editing 

Mariella Siña: Investigation; Writing - Review & Editing 

Magdalena Mair: Data acquisition/data mining (environmental samples), literature search, coding, formal 

analysis, visualization, writing (results), review 

Anna Kukkola: Data curation; Writing - Original Draft; Writing - Review & Editing 

Bethanie Carney Almroth: Writing - Original Draft; Writing - Review & Editing 

Ezra Miller: Conceptualization; Writing - Original Draft; Writing - Review & Editing 

 

Funding sources 
Luan de Souza Leite received funding support from São Paulo Research Foundation (Proc. FAPESP 
2023/16350-2; 2022/12104-4). 
Win Cowger received funding for this work from the McPike Zima Charitable Foundation. 
Lidwina Bertrand received funding support from the National Scientific and Technical Research Council 
(CONICET, Argentina) (project funding PIBAA 2022-2023 0121).  
Mariella Siña did not receive specific funding for this project but acknowledges support from National 
Taiwan University. 
Bethanie Carney Almroth received funding from the Swedish Research Council for Sustainable 
Development FORMAS grant number 2021-00913. 
Magdalena M. Mair received funding from the Deutsche Forschungsgemeinschaft (DFG, German Research 
Foundation) – SFB 1357 Mikroplastik – Project Number 391977956. 

Jo
ur

na
l P

re
-p

ro
of

https://github.com/ScottCoffin/ToMEx2.0_EcoToxRisk
https://doi.org/10.5281/zenodo.16740504


 

32 

The following authors have no funding to report for the conduct of research and/or preparation of this 
article: Stephanie Kennedy, Andrew Barrick, Ezra Miller, Kazi Towsif Ahmed, Anna Kukkola 
 

Disclaimer: 

SC was employed at California Environmental Protection Agency’s Office of Environmental Health Hazard 
Assessment (OEHHA) and the State Water Resources Control Board (SWRCB) during the writing of this 
manuscript. The views are those of his and do not necessarily reflect the views or policies of OEHHA, the 
SWRCB, or California Environmental Protection Agency. 

Acknowledgements 
We are grateful to the following individuals for providing reviews of the manuscript: Leah Thornton-
Hampton; Kannan Krishnan; and Robert Brownwood. 

Declaration of generative AI and AI-assisted 

technologies in the writing process. 
During the preparation of this work the author(s) used ChatGPT 4o to improve the readability and 
language of the manuscript. After using this tool/service, the author(s) reviewed and edited the 
content as needed and take(s) full responsibility for the content of the published article.  

Jo
ur

na
l P

re
-p

ro
of



 

33 

     References  
[1] California State Water Resources Control Board, 2020. State Water Resources Control Board 
Resolution No. 2020-0021 Adoption of Definition of ‘Microplastics in Drinking Water’. 
https://www.waterboards.ca.gov/board_decisions/adopted_orders/resolutions/2020/rs2020_0021.
pdf 

[2] Hartmann NB, Hüffer T, Thompson RC, Hassellöv M, Verschoor A, Daugaard AE, Rist S, Karlsson 
T, Brennholt N, Cole M, Herrling MP, Hess MC, Ivleva NP, Lusher AL, Wagner M, 2019. Are We 
Speaking the Same Language? Recommendations for a Definition and Categorization Framework for 
Plastic Debris. Environ Sci Technol 53, 1039–1047. https://doi.org/10.1021/acs.est.8b05297  

[3] Rochman CM, Brookson C, Bikker J, Djuric N, Earn A, Bucci K, Athey S, Huntington A, McIlwraith 
H, Munno K, De Frond H, Kolomijeca A, Erdle L, Grbic J, Bayoumi M, Borrelle SB, Wu T, Santoro S, 
Werbowski LM, Zhu X, Giles RK, Hamilton BM, Thaysen C, Kaura A, Klasios N, Ead L, Kim J, Sherlock C, 
Ho A, Hung C, 2019. Rethinking microplastics as a diverse contaminant suite. Environ Toxicol Chem 
38, 703–711. https://doi.org/10.1002/etc.4371  

[4] California Ocean Protection Council, 2022. Statewide Microplastics Strategy. California Ocean 
Protection Council. 
https://www.opc.ca.gov/webmaster/ftp/pdf/agenda_items/20220223/Item_6_Exhibit_A_Statewide
_Microplastics_Strategy.pdf 

 [5] United Nations Environment Programme, 2022. Historic day in the campaign to beat plastic 
pollution: Nations commit to develop a legally binding agreement. United Nations Environment 
Programme.https://www.unep.org/news-and-stories/press-release/historic-day-campaign-beat-
plastic-pollution-nations-commit-develop 

[6] European Union, 2023. Commission Regulation (EU) 2023/2055 of 25 September 2023 
Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the 
Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) 
as Regards Synthetic Polymer Microparticles (2023). European Union, Brussels, Belgium. https://eur-
lex.europa.eu/eli/reg/2023/2055/oj 

[7] Koelmans AA, Besseling E, Foekema E, Kooi M, Mintenig S, Ossendorp BC, Redondo-
Hasselerharm PE, Verschoor A, van Wezel AP, Scheffer M, 2017. Risks of Plastic Debris: Unravelling 
Fact, Opinion, Perception, and Belief. Environ Sci Technol 51, 11513–11519. 
https://doi.org/10.1021/acs.est.7b02219  

[8] Corsi I, Bergami E, Grassi G, 2020. Behavior and Bio-Interactions of Anthropogenic Particles in 
Marine Environment for a More Realistic Ecological Risk Assessment. Front Environ Sci 8. 
https://doi.org/10.3389/fenvs.2020.00060  

[9] Bridson JH, Abbel R, Smith DA, Northcott GL, Gaw S, 2023. Release of additives and non-
intentionally added substances from microplastics under environmentally relevant conditions. 
Environ Adv 12, 100359. https://doi.org/10.1016/j.envadv.2023.100359  

Jo
ur

na
l P

re
-p

ro
of

https://www.unep.org/news-and-stories/press-release/historic-day-campaign-beat-plastic-pollution-nations-commit-develop
https://www.unep.org/news-and-stories/press-release/historic-day-campaign-beat-plastic-pollution-nations-commit-develop
https://eur-lex.europa.eu/eli/reg/2023/2055/oj
https://eur-lex.europa.eu/eli/reg/2023/2055/oj


 

34 

[10] de Ruijter VN, Redondo-Hasselerharm PE, Gouin T, Koelmans AA, 2020. Quality Criteria 
for Microplastic Effect Studies in the Context of Risk Assessment: A Critical Review. Environ Sci 
Technol 54, 11692–11705. https://doi.org/10.1021/acs.est.0c03057  

[11] Koelmans AA, Redondo-Hasselerharm PE, Mohamed Nor NH, Kooi M, 2020. Solving the 
Nonalignment of Methods and Approaches Used in Microplastic Research to Consistently 
Characterize Risk. Environ Sci Technol 54, 12307–12315. https://doi.org/10.1021/acs.est.0c02982  

[12] Mehinto AC, Coffin S, Koelmans AA, Brander SM, Wagner M, Thornton Hampton LM, 
Burton AG, Miller E, Gouin T, Weisberg SB, Rochman CM, 2022. Risk-based management framework 
for microplastics in aquatic ecosystems. Microplastics Nanoplastics 2, 17. 
https://doi.org/10.1186/s43591-022-00033-3  

[13] State Water Resources Control Board CEPA, 2024. 2024 California Integrated Report: 
Surface water quality assessments to comply with Clean Water Act sections 303(d) and 305(b). State 
Water Resources Control Board, Sacramento, CA. 
https://www.waterboards.ca.gov/water_issues/programs/tmdl/2023_2024state_ir_reports/2024-
integrated-report-final-staff-report.pdf  

[14] Coffin S, Weisberg SB, Rochman C, Kooi M, Koelmans AA, 2022. Risk characterization of 
microplastics in San Francisco Bay, California. Microplastics Nanoplastics 2, 19. 
https://doi.org/10.1186/s43591-022-00037-z  

[15] Thornton Hampton, Leah M., Briggs Wyler, Dana, Carney Almroth, Bethanie, Coffin, 
Scott, Cowger, Win, Doyle, Darragh, 2025. The Toxicity of Microplastics Explorer (ToMEx) 
2.0.Microplastics and Nanoplastics, in press 

[16] Stephan CE, Mount DI, Hansen DJ, Gentile JH, Chapman GA, Brungs WA, 1985. 
Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic 
Organisms and Their Uses. U.S. Environmental Protection Agency, Washington, D.C.  

[17] van Straalen NM, Denneman CAJ, 1989. Ecotoxicological evaluation of soil quality 
criteria. Ecotoxicol Environ Saf 18, 241–251. https://doi.org/10.1016/0147-6513(89)90018-3  

[18] Newman MC, Ownby DR, Mézin LCA, Powell DC, Christensen TRL, Lerberg SB, Anderson 
B, 2000. Applying species‐sensitivity distributions in ecological risk assessment: Assumptions of 
distribution type and sufficient numbers of species. Environ Toxicol Chem 19, 508–515. 
https://doi.org/10.1002/etc.5620190233  

[19] Verdonck FAM, Aldenberg T, Jaworska J, Vanrolleghem PA, 2003. Limitations of current 
risk characterization methods in probabilistic environmental risk assessment. Environ Toxicol Chem 
22, 2209–2213. https://doi.org/10.1897/02-435  

[20] Hickey GL, Craig PS, Luttik R, De Zwart D, 2012. On the quantification of intertest variability in 
ecotoxicity data with application to species sensitivity distributions. Environmental Toxicology and 
Chemistry 31, 1903–1910. https://doi.org/10.1002/etc.1891 

Jo
ur

na
l P

re
-p

ro
of



 

35 

[21] Gottschalk F, Nowack B, 2013. A probabilistic method for species sensitivity distributions 
taking into account the inherent uncertainty and variability of effects to estimate environmental 
risk. Integr Environ Assess Manag 9, 79–86. https://doi.org/10.1002/ieam.1334  

[22] Wigger H, Kawecki D, Nowack B, Adam V, 2020. Systematic Consideration of Parameter 
Uncertainty and Variability in Probabilistic Species Sensitivity Distributions. Integr Environ Assess 
Manag 16, 211–222. https://doi.org/10.1002/ieam.4214  

[23] Yang T, Nowack B, 2020. A Meta‐analysis of Ecotoxicological Hazard Data for 
Nanoplastics in Marine and Freshwater Systems. Environ Toxicol Chem 39, 2588–2598. 
https://doi.org/10.1002/etc.4887  

[24] Kooi M, Primpke S, Mintenig SM, Lorenz C, Gerdts G, Koelmans AA, 2021. Characterizing 
the multidimensionality of microplastics across environmental compartments. Water Res 202, 
117429. https://doi.org/10.1016/j.watres.2021.117429  

[25] Salomon S, Grubmüller E, Kropf P, Nickl E, Rühl A, Weigel S, Becker F, Antonio Vital AL, 
Laforsch C, Schott M, Mair MM, 2024. Effects of dissolved organic matter on the toxicity of micro- 
and nanoplastic particles to Daphnia - a meta-analysis. Microplastics Nanoplastics 4, 11. 
https://doi.org/10.1186/s43591-024-00088-4  

[26] Natarajan L, Soupam D, Dey S, Chandrasekaran N, Kundu R, Paul S, Mukherjee A, 2022. 
Toxicity of polystyrene microplastics in freshwater algae Scenedesmus obliquus: Effects of particle 
size and surface charge. Toxicol Rep 9, 1953–1961. https://doi.org/10.1016/j.toxrep.2022.10.013  

[27] Saavedra J, Stoll S, Slaveykova VI, 2019. Influence of nanoplastic surface charge on eco-
corona formation, aggregation and toxicity to freshwater zooplankton. Environ Pollut 252, 715–722. 
https://doi.org/10.1016/j.envpol.2019.05.135  

[28] Monclús L, Arp HPH, Groh KJ, Faltynkova A, Løseth ME, Muncke J, Wang Z, Wolf R, 
Zimmermann L, Wagner M, 2025. Mapping the chemical complexity of plastics. Nature 643, 349–
355. https://doi.org/10.1038/s41586-025-09184-8  

[29] Carmona E, Rojo-Nieto E, Rummel CD, Krauss M, Syberg K, Ramos TM, Brosche S, 
Backhaus T, Almroth BC, 2023. A dataset of organic pollutants identified and quantified in recycled 
polyethylene pellets. Data Brief 51, 109740. https://doi.org/10.1016/j.dib.2023.109740  

[30] Banerjee A, Billey LO, Shelver WL, 2021. Uptake and toxicity of polystyrene 
micro/nanoplastics in gastric cells: Effects of particle size and surface functionalization. PLoS ONE 16, 
e0260803. https://doi.org/10.1371/journal.pone.0260803  

[31] Rubin AE, Zucker I, 2022. Interactions of microplastics and organic compounds in aquatic 
environments: A case study of augmented joint toxicity. Chemosphere 289, 133212. 
https://doi.org/10.1016/j.chemosphere.2021.133212  

[32] Pick J, Noble D, 2018. Reproducible, flexible and high-throughput data extraction from 
primary literature: The metaDigitise R package. Methods Ecol Evol 10. 
https://doi.org/10.1111/2041-210X.13118  

Jo
ur

na
l P

re
-p

ro
of



 

36 

[33] Corcoran PL, Belontz SL, Ryan K, Walzak MJ, 2020. Factors Controlling the Distribution of 
Microplastic Particles in Benthic Sediment of the Thames River, Canada. Environ Sci Technol 54, 
818–825. https://doi.org/10.1021/acs.est.9b04896  

[34] Devereux R, Westhead E, Jayaratne R, Newport D, 2022. Microplastic abundance in the 
Thames River during the New Year period. Mar Pollut Bull 177. 
https://doi.org/10.1016/j.marpolbul.2022.113534  

[35] Frei S, Piehl S, Gilfedder BS, Löder MGJ, Krutzke J, Wilhelm L, Laforsch C, 2019. 
Occurence of microplastics in the hyporheic zone of rivers. Sci Rep 9, 15256. 
https://doi.org/10.1038/s41598-019-51741-5  

[36] Li J, Ouyang Z, Liu P, Zhao X, Wu R, Zhang C, Lin C, Li Y, Guo X, 2021. Distribution and 
characteristics of microplastics in the basin of Chishui River in Renhuai, China. Sci Total Environ 773, 
145591. https://doi.org/10.1016/j.scitotenv.2021.145591  

[37] Mani T, Hauk A, Walter U, Burkhardt-Holm P, 2015. Microplastics profile along the Rhine 
River. Sci Rep 5, 17988. https://doi.org/10.1038/srep17988  

[38] Reisser J, Shaw J, Wilcox C, Hardesty BD, Proietti M, Thums M, Pattiaratchi C, 2013. 
Marine Plastic Pollution in Waters around Australia: Characteristics, Concentrations, and Pathways. 
PLOS ONE 8, e80466. https://doi.org/10.1371/journal.pone.0080466  

[39] Rolf M, Laermanns H, Kienzler L, Pohl C, Möller JN, Laforsch C, Löder MGJ, Bogner C, 
2022. Flooding frequency and floodplain topography determine abundance of microplastics in an 
alluvial Rhine soil. Sci Total Environ 836, 155141. https://doi.org/10.1016/j.scitotenv.2022.155141  

[40] Soininen T, Uurasjärvi E, Hämäläinen L, Huusari N, Feodoroff J, Moshnikoff J, Niiranen E, 
Feodoroff P, Mustonen T, Koistinen A, 2024. Microplastics in Arctic waters of the Finnish Sámi area. 
Sci Total Environ 940, 173666. https://doi.org/10.1016/j.scitotenv.2024.173666  

[41] Soltani N, Keshavarzi B, Moore F, Busquets R, Nematollahi MJ, Javid R, Gobert S, 2022. 
Effect of land use on microplastic pollution in a major boundary waterway: The Arvand River. Sci 
Total Environ 830, 154728. https://doi.org/10.1016/j.scitotenv.2022.154728  

[42] Uurasjärvi E, Pääkkönen M, Setälä O, Koistinen A, Lehtiniemi M. Original data for article: 
Microplastics accumulate to thin layers in the stratified Baltic Sea [dataset]. Zenodo; 2021. 
https://doi:10.5281/zenodo.4892876. 

[43] Yakushev E, Gebruk A, Osadchiev A, Pakhomova S, Lusher A, Berezina A, van Bavel B, 
Vorozheikina E, Chernykh D, Kolbasova G, Razgon I, Semiletov I, 2021. Microplastics distribution in 
the Eurasian Arctic is affected by Atlantic waters and Siberian rivers. Commun Earth Environ 2, 23. 
https://doi.org/10.1038/s43247-021-00091-0 [44] Cox TF, Ferry G, 1993. Discriminant analysis 
using non-metric multidimensional scaling. Pattern Recognit 26, 145–153. 
https://doi.org/10.1016/0031-3203(93)90096-F  

[45] Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J, 2019. 
Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. 
Water Res 155, 410–422. https://doi.org/10.1016/j.watres.2019.02.054  

Jo
ur

na
l P

re
-p

ro
of



 

37 

[4645] Mehinto AC, Coffin S, Koelmans AA, Brander SM, Wagner M, Thornton Hampton LM, Burton 
GA, Miller E, Gouin T, Weisberg SB, Rochman CM, 2025. Correction to: Risk-based management 
framework for microplastics in aquatic ecosystems. Micropl&Nanopl 5, 41. 
https://doi.org/10.1186/s43591-025-00149-2[4746] Arachchige CNPG, Prendergast LA, Staudte RG, 
2022. Robust analogs to the coefficient of variation. J Appl Stat 49, 268–290. 
https://doi.org/10.1080/02664763.2020.1808599  

[4847] Redondo-Hasselerharm PE, Rico A, Huerta Lwanga E, van Gestel CAM, Koelmans AA, 
2024. Source-specific probabilistic risk assessment of microplastics in soils applying quality criteria 
and data alignment methods. J Hazard Mater 467, 133732. 
https://doi.org/10.1016/j.jhazmat.2024.133732  

[4948] Schmidt R, Voigt M, Mailach R, 2019. Latin Hypercube Sampling-Based Monte Carlo 
Simulation: Extension of the Sample Size and Correlation Control. In: Hirsch C, Wunsch D, 
Szumbarski J, Łaniewski-Wołłk Ł, Pons-Prats J (eds) Uncertainty Management for Robust Industrial 
Design in Aeronautics : Findings and Best Practice Collected During UMRIDA, a Collaborative 
Research Project (2013–2016) Funded by the European Union. Springer International Publishing, 
Cham, pp 279–289  

[5049] Wardani I, Hazimah Mohamed Nor N, Wright SL, Kooter IM, Koelmans AA, 2024. Nano- 
and microplastic PBK modeling in the context of human exposure and risk assessment. Environ Int 
186, 108504. https://doi.org/10.1016/j.envint.2024.108504  

[5150] Puy A, Piano SL, Saltelli A, Levin SA, 2022. sensobol: An R Package to Compute Variance-
Based Sensitivity Indices. J Stat Softw 102, 1–37. https://doi.org/10.18637/jss.v102.i05  

[5251] Jâms IB, Windsor FM, Poudevigne-Durance T, Ormerod SJ, Durance I, 2020. Estimating 
the size distribution of plastics ingested by animals. Nat Commun 11, 1594. 
https://doi.org/10.1038/s41467-020-15406-6  

[5352] Wheeler JR, Grist EPM, Leung KMY, Morritt D, Crane M, 2002. Species sensitivity 
distributions: data and model choice. Mar Pollut Bull 45, 192–202. https://doi.org/10.1016/S0025-
326X(01)00327-7  

[5453] Xu F-L, Li Y-L, Wang Y, He W, Kong X-Z, Qin N, Liu W-X, Wu W-J, Jorgensen SE, 2015. Key 
issues for the development and application of the species sensitivity distribution (SSD) model for 
ecological risk assessment. Ecol Indic 54, 227–237. https://doi.org/10.1016/j.ecolind.2015.02.001  

[5554] Adam V, Yang T, Nowack B, 2019. Toward an ecotoxicological risk assessment of 
microplastics: Comparison of available hazard and exposure data in freshwaters. Environ Toxicol 
Chem 38, 436–447. https://doi.org/10.1002/etc.4323  

[5655] Jaikumar G, Brun NR, Vijver MG, Bosker T, 2019. Reproductive toxicity of primary and 
secondary microplastics to three cladocerans during chronic exposure. Environ Pollut 249, 638–646. 
https://doi.org/10.1016/j.envpol.2019.03.085  

[5756] Mizukami-Murata S, Suzuki Y, Sakurai K, Yamashita H, 2021. Freshwater alga 
Raphidocelis subcapitata undergoes metabolomic changes in response to electrostatic adhesion by 

Jo
ur

na
l P

re
-p

ro
of

https://doi.org/10.1186/s43591-025-00149-2


 

38 

micrometer-sized nylon 6 particles. Environ Sci Pollut Res 28, 66901–66913. 
https://doi.org/10.1007/s11356-021-15300-8  

[5857] Capolupo M, Valbonesi P, Fabbri E, 2021. A Comparative Assessment of the Chronic 
Effects of Micro- and Nano-Plastics on the Physiology of the Mediterranean Mussel Mytilus 
galloprovincialis. Nanomaterials 11, 649. https://doi.org/10.3390/nano11030649  

[5958] Kim J, Rhee J-S, 2021. Biochemical and physiological responses of the water flea Moina 
macrocopa to microplastics: a multigenerational study. Mol Cell Toxicol 17, 523–532. 
https://doi.org/10.1007/s13273-021-00162-5  

[6059] Richardson CR, Burritt DJ, Allan BJM, Lamare MD, 2021. Microplastic ingestion induces 
asymmetry and oxidative stress in larvae of the sea urchin Pseudechinus huttoni. Mar Pollut Bull 
168, 112369. https://doi.org/10.1016/j.marpolbul.2021.112369  

[6160] Beiras R, Bellas J, Cachot J, Cormier B, Cousin X, Engwall M, Gambardella C, Garaventa F, 
Keiter S, Le Bihanic F, López-Ibáñez S, Piazza V, Rial D, Tato T, Vidal-Liñán L, 2018. Ingestion and 
contact with polyethylene microplastics does not cause acute toxicity on marine zooplankton. J 
Hazard Mater 360, 452–460. https://doi.org/10.1016/j.jhazmat.2018.07.101  

[616263646566676869[70] Takeshita KM, Iwasaki Y, Sinclair TM, Hayashi TI, Naito W, 2022. 
Illustrating a Species Sensitivity Distribution for Nano- and Microplastic Particles Using Bayesian 
Hierarchical Modeling. Environmental Toxicology and Chemistry 41, 954–960. 
https://doi.org/10.1002/etc.529571726273] Alberto Lopes J, Tsochatzis ED, 2023. 
Poly(ethylene terephthalate), Poly(butylene terephthalate), and Polystyrene Oligomers: Occurrence 
and Analysis in Food Contact Materials and Food. J Agric Food Chem 71, 2244–2258. 
https://doi.org/10.1021/acs.jafc.2c08558  

[6374] Carmona E, Rojo-Nieto E, Rummel CD, Krauss M, Syberg K, Ramos TM, Brosche S, 
Backhaus T, Almroth BC, 2023. A dataset of organic pollutants identified and quantified in recycled 
polyethylene pellets. Data Brief 51, 109740. https://doi.org/10.1016/j.dib.2023.109740  

[757677787980[81https://doi.org/10.1016/j.aquatox.2021.105769828384858687888990919293949
56496] Wieland S, Ramsperger AFRM, Gross W, Lehmann M, Witzmann T, Caspari A, Obst M, 
Gekle S, Auernhammer GK, Fery A, Laforsch C, Kress H, 2024. Nominally identical microplastic 
models differ greatly in their particle-cell interactions. Nat Commun 15, 922. 
https://doi.org/10.1038/s41467-024-45281-4  

[6597] Besseling E, Quik JTK, Sun M, Koelmans AA, 2017. Fate of nano- and microplastic in 
freshwater systems: A modeling study. Environ Pollut 220, 540–548. 
https://doi.org/10.1016/j.envpol.2016.10.001  

[6698] Zhang H, Cheng H, Wang Y, Duan Z, Cui W, Shi Y, Qin L, 2022. Influence of Functional 
Group Modification on the Toxicity of Nanoplastics. Front Mar Sci 8. 
https://doi.org/10.3389/fmars.2021.800782  

[6799] Ali I, Tan X, Peng C, Naz I, Zhang Y, Hernández A, Marcos R, Pervez R, Duan Z, Ruan Y, 2024. 
Eco- and bio-corona-based microplastics and nanoplastics complexes in the environment: 

Jo
ur

na
l P

re
-p

ro
of

https://doi.org/10.1016/j.aquatox.2021.105769


 

39 

Modulations in the toxicological behavior of plastic particles and factors affecting. Process Saf 
Environ Prot 187, 356–375. https://doi.org/10.1016/j.psep.2024.04.035  

[68] Ramsperger AFRM, Narayana VKB, Gross W, Mohanraj J, Thelakkat M, Greiner A, 
Schmalz H, Kress H, Laforsch C, 2020. Environmental exposure enhances the internalization of 
microplastic particles into cells. Sci Adv 6, eabd1211. https://doi.org/10.1126/sciadv.abd1211  

[69] Wang X, Bolan N, Tsang DCW, Sarkar B, Bradney L, Li Y, 2021. A review of microplastics 
aggregation in aquatic environment: Influence factors, analytical methods, and environmental 
implications. J Hazard Mater 402, 123496. https://doi.org/10.1016/j.jhazmat.2020.123496  

[70] He S, Jia M, Xiang Y, Song B, Xiong W, Cao J, Peng H, Yang Y, Wang W, Yang Z, Zeng G, 
2022. Biofilm on microplastics in aqueous environment: Physicochemical properties and 
environmental implications. J Hazard Mater 424, 127286. 
https://doi.org/10.1016/j.jhazmat.2021.127286  

[71] Qiongjie W, Yong Z, Yangyang Z, Zhouqi L, Jinxiaoxue W, Huijuan C, 2022. Effects of 
biofilm on metal adsorption behavior and microbial community of microplastics. J Hazard Mater 
424, 127340. https://doi.org/10.1016/j.jhazmat.2021.127340  

[72] Ma C, Shi H, Slaveykova VI, 2024. Entanglement of Daphnia magna by Fibrous Microplastics 
through “Hook and Loop” Action. Environ Sci Technol Lett 11, 433–437. 
https://doi.org/10.1021/acs.estlett.4c00279 

[73] Phuong NN, Zalouk-Vergnoux A, Poirier L, Kamari A, Châtel A, Mouneyrac C, Lagarde F, 
2016. Is there any consistency between the microplastics found in the field and those used in 
laboratory experiments? Environ Pollut 211, 111–123. https://doi.org/10.1016/j.envpol.2015.12.035  

[74] Ziajahromi S, Kumar A, Neale PA, Leusch FDL, 2017. Impact of Microplastic Beads and 
Fibers on Waterflea (Ceriodaphnia dubia) Survival, Growth, and Reproduction: Implications of Single 
and Mixture Exposures. Environ Sci Technol 51, 13397–13406. 
https://doi.org/10.1021/acs.est.7b03574  

[75] Au SY, Bruce TF, Bridges WC, Klaine SJ, 2015. Responses of Hyalella azteca to acute and 
chronic microplastic exposures. Environ Toxicol Chem 34, 2564–2572. 
https://doi.org/10.1002/etc.3093  

[76] Koelmans AA, Gebreyohanes Belay BM, Mintenig SM, Mohamed Nor NH, Redondo-
Hasselerharm PE, de Ruijter VN, 2023. Towards a rational and efficient risk assessment for 
microplastics. TrAC Trends Anal Chem 165, 117142. https://doi.org/10.1016/j.trac.2023.117142  

[77] Plastics Europe, 2024. Plastics – the Fast Facts 2024. 
https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/ 

[78] Schwarz AE, Ligthart TN, Boukris E, van Harmelen T, 2019. Sources, transport, and 
accumulation of different types of plastic litter in aquatic environments: A review study. Mar Pollut 
Bull 143, 92–100. https://doi.org/10.1016/j.marpolbul.2019.04.029  

Jo
ur

na
l P

re
-p

ro
of

https://doi.org/10.1021/acs.estlett.4c00279


 

40 

[79] Erni-Cassola G, Zadjelovic V, Gibson MI, Christie-Oleza JA, 2019. Distribution of plastic 
polymer types in the marine environment; A meta-analysis. J Hazard Mater 369, 691–698. 
https://doi.org/10.1016/j.jhazmat.2019.02.067  

[80] European Bioplastics, 2023. Statement on the Policy Framework for Bio-Based, 
Biodegradable and Compostable Plastics. European Bioplastics, Berlin, Germany  

[81] Okoffo ED, Chan CM, Rauert C, Kaserzon S, Thomas KV, 2022. Identification and 
Quantification of Micro-Bioplastics in Environmental Samples by Pyrolysis-Gas Chromatography-
Mass Spectrometry. Environ Sci Technol 56, 13774–13785. https://doi.org/10.1021/acs.est.2c04091  

[82] Halle LL, Palmqvist A, Kampmann K, Jensen A, Hansen T, Khan FR, 2021. Tire wear particle and 
leachate exposures from a pristine and road-worn tire to Hyalella azteca: Comparison of chemical 
content and biological effects. Aquatic Toxicology 232, 105769. 
https://doi.org/10.1016/j.aquatox.2021.105769[83] Wang Y, Li X, Yang H, Wu Y, Pu Q, He W, Li X, 
2024. A review of tire wear particles: Occurrence, adverse effects, and control strategies. Ecotoxicol 
Environ Saf 283, 116782. https://doi.org/10.1016/j.ecoenv.2024.116782  

[84] D’Costa AH, 2022. Microplastics in decapod crustaceans: Accumulation, toxicity and 
impacts, a review. Sci Total Environ 832, 154963. https://doi.org/10.1016/j.scitotenv.2022.154963  

[85] Ding J, Sun C, He C, Li J, Ju P, Li F, 2021. Microplastics in four bivalve species and basis for 
using bivalves as bioindicators of microplastic pollution. Sci Total Environ 782, 146830. 
https://doi.org/10.1016/j.scitotenv.2021.146830  

[86] Pazos RS, Maiztegui T, Colautti DC, Paracampo AH, Gómez N, 2017. Microplastics in gut 
contents of coastal freshwater fish from Río de la Plata estuary. Mar Pollut Bull 122, 85–90. 
https://doi.org/10.1016/j.marpolbul.2017.06.007  

[87] Jovanović B, 2017. Ingestion of microplastics by fish and its potential consequences from 
a physical perspective: Potential Consequences of Fish Ingestion of Microplastic. Integr Environ 
Assess Manag 13, 510–515. https://doi.org/10.1002/ieam.1913  

[88] Choi D, Bang J, Kim T, Oh Y, Hwang Y, Hong J, 2020. In vitro chemical and physical 
toxicities of polystyrene microfragments in human-derived cells. J Hazard Mater 400, 123308. 
https://doi.org/10.1016/j.jhazmat.2020.123308  

[89] Qiao R, Deng Y, Zhang S, Wolosker MB, Zhu Q, Ren H, Zhang Y, 2019. Accumulation of 
different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of 
zebrafish. Chemosphere 236, 124334. https://doi.org/10.1016/j.chemosphere.2019.07.065  

[90] Kukkola A, Krause S, Lynch I, Sambrook Smith GH, Nel H, 2021. Nano and microplastic 
interactions with freshwater biota – Current knowledge, challenges and future solutions. Environ Int 
152, 106504. https://doi.org/10.1016/j.envint.2021.106504  

[91] Pelegrini K, Pereira TCB, Maraschin TG, Teodoro LDS, Basso NRDS, De Galland GLB, 
Ligabue RA, Bogo MR, 2023. Micro- and nanoplastic toxicity: A review on size, type, source, and test-
organism implications. Sci Total Environ 878, 162954. 
https://doi.org/10.1016/j.scitotenv.2023.162954  

Jo
ur

na
l P

re
-p

ro
of

https://doi.org/10.1016/j.aquatox.2021.105769


 

41 

[92] Koelmans AA, Bakir A, Burton GA, Janssen CR, 2016. Microplastic as a Vector for 
Chemicals in the Aquatic Environment: Critical Review and Model-Supported Reinterpretation of 
Empirical Studies. Environ Sci Technol 50, 3315–3326. https://doi.org/10.1021/acs.est.5b06069  

[93100] Gouin T, Whelan MJ, 2024. Evaluating microplastic particles as vectors of exposure for 
plastic additive chemicals using a food web model. Microplastics Nanoplastics 4, 21. 
https://doi.org/10.1186/s43591-024-00099-1  

[94101] Bub S, Petschick L, Stehle S, Wolfram J, Schulz R, 2025. Limitations of chemical 
monitoring hinder aquatic risk evaluations on the macroscale. Science 388, 1301–1306. 
https://doi.org/10.1126/science.adn5356  

[95102] Zettler ER, Mincer TJ, Amaral-Zettler LA, 2013. Life in the “Plastisphere”: Microbial 
Communities on Plastic Marine Debris. Environ Sci Technol 47, 7137–7146. 
https://doi.org/10.1021/es401288x  

[96103] Pham DN, Clark L, Li M, 2021. Microplastics as hubs enriching antibiotic-resistant 
bacteria and pathogens in municipal activated sludge. J Hazard Mater Lett 2, 100014. 
https://doi.org/10.1016/j.hazl.2021.100014  

[97104] Dong X, Liu X, Hou Q, Wang Z, 2023. From natural environment to animal tissues: A review 
of microplastics(nanoplastics) translocation and hazards studies. Sci Total Environ 855, 158686. 
https://doi.org/10.1016/j.scitotenv.2022.158686  

[98105] Ma C, Chen Q, Li J, Li B, Liang W, Su L, Shi H, 2021. Distribution and translocation of micro- 
and nanoplastics in fish. Crit Rev Toxicol 51, 740–753. 
https://doi.org/10.1080/10408444.2021.2024495  

[99106] Kou L, Sun J, Zhai Y, He Z, 2013. The endocytosis and intracellular fate of nanomedicines: 
Implication for rational design. Asian J Pharm Sci 8, 1–10. 
https://doi.org/10.1016/j.ajps.2013.07.001  

[100107] Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S, 2009. Size-Dependent Endocytosis of 
Nanoparticles. Adv Mater Deerfield Beach Fla 21, 419–424. 
https://doi.org/10.1002/adma.200801393  

[101108] REJMAN J, OBERLE V, ZUHORN IS, HOEKSTRA D, 2004. Size-dependent internalization of 
particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377, 159–169. 
https://doi.org/10.1042/bj20031253  

[102109] Sahay G, Alakhova DY, Kabanov AV, 2010. Endocytosis of nanomedicines. J Controlled 
Release 145, 182–195. https://doi.org/10.1016/j.jconrel.2010.01.036  

[103110] Jaumouillé V, Waterman CM, 2020. Physical Constraints and Forces Involved in 
Phagocytosis. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.01097  

[104111] Collard F, Gilbert B, Compère P, Eppe G, Das K, Jauniaux T, Parmentier E, 2017. 
Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environ Pollut Barking 
Essex 1987 229, 1000–1005. https://doi.org/10.1016/j.envpol.2017.07.089  

Jo
ur

na
l P

re
-p

ro
of



 

42 

[105112] Elizalde-Velázquez A, Carcano AM, Crago J, Green MJ, Shah SA, Cañas-Carrell JE, 2020. 
Translocation, trophic transfer, accumulation and depuration of polystyrene microplastics in 
Daphnia magna and Pimephales promelas. Environ Pollut Barking Essex 1987 259, 113937. 
https://doi.org/10.1016/j.envpol.2020.113937  

[106113] Zeytin S, Wagner G, Mackay-Roberts N, Gerdts G, Schuirmann E, Klockmann S, Slater M, 
2020. Quantifying microplastic translocation from feed to the fillet in European sea bass 
Dicentrarchus labrax. Mar Pollut Bull 156, 111210. 
https://doi.org/10.1016/j.marpolbul.2020.111210  

[107114] Collard F, Gasperi J, Gilbert B, Eppe G, Azimi S, Rocher V, Tassin B, 2018. Anthropogenic 
particles in the stomach contents and liver of the freshwater fish Squalius cephalus. Sci Total Environ 
643, 1257–1264. https://doi.org/10.1016/j.scitotenv.2018.06.313  

[108115] Abbasi S, Soltani N, Keshavarzi B, Moore F, Turner A, Hassanaghaei M, 2018. Microplastics 
in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere 205, 80–87. 
https://doi.org/10.1016/j.chemosphere.2018.04.076  

[109116] Akhbarizadeh R, Moore F, Keshavarzi B, 2018. Investigating a probable relationship 
between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. 
Environ Pollut 232, 154–163. https://doi.org/10.1016/j.envpol.2017.09.028  

[110117] Al-Sid-Cheikh M, Rowland SJ, Stevenson K, Rouleau C, Henry TB, Thompson RC, 2018. 
Uptake, Whole-Body Distribution, and Depuration of Nanoplastics by the Scallop Pecten maximus at 
Environmentally Realistic Concentrations. Environ Sci Technol 52, 14480–14486. 
https://doi.org/10.1021/acs.est.8b05266  

[111118] Watts AJR, Lewis C, Goodhead RM, Beckett SJ, Moger J, Tyler CR, Galloway TS, 2014. 
Uptake and retention of microplastics by the shore crab Carcinus maenas. Environ Sci Technol 48, 
8823–8830. https://doi.org/10.1021/es501090e  

[112119] McIlwraith HK, Kim J, Helm P, Bhavsar SP, Metzger JS, Rochman CM, 2021. Evidence of 
Microplastic Translocation in Wild-Caught Fish and Implications for Microplastic Accumulation 
Dynamics in Food Webs. Environ Sci Technol 55, 12372–12382. 
https://doi.org/10.1021/acs.est.1c02922  

[113120] Ramsperger AFRM, Wieland S, Wilde MV, Fröhlich T, Kress H, Laforsch C, 2025. Cellular 
internalization pathways of environmentally exposed microplastic particles: Phagocytosis or 
macropinocytosis? J Hazard Mater 489, 137647. https://doi.org/10.1016/j.jhazmat.2025.137647  

[114121] Persiani E, Cecchettini A, Ceccherini E, Gisone I, Morales MA, Vozzi F, 2023. Microplastics: 
A Matter of the Heart (and Vascular System). Biomedicines 11, 264. 
https://doi.org/10.3390/biomedicines11020264  

[122115123] Scopetani C, Esterhuizen-Londt M, Chelazzi D, Cincinelli A, Setälä H, Pflugmacher S, 
2020. Self-contamination from clothing in microplastics research. Ecotoxicol Environ Saf 189, 
110036. https://doi.org/10.1016/j.ecoenv.2019.110036  

Jo
ur

na
l P

re
-p

ro
of



 

43 

[116124] Triebskorn R, Braunbeck T, Grummt T, Hanslik L, Huppertsberg S, Jekel M, Knepper TP, 
Krais S, Müller YK, Pittroff M, Ruhl AS, Schmieg H, Schür C, Strobel C, Wagner M, Zumbülte N, Köhler 
H-R, 2019. Relevance of nano- and microplastics for freshwater ecosystems: A critical review. TrAC 
Trends Anal Chem 110, 375–392. https://doi.org/10.1016/j.trac.2018.11.023  

[117125] Schür C, Rist S, Baun A, Mayer P, Hartmann NB, Wagner M, 2019. When Fluorescence Is 
not a Particle: The Tissue Translocation of Microplastics in Daphnia magna Seems an Artifact. 
Environ Toxicol Chem 38, 1495–1503. https://doi.org/10.1002/etc.4436  

[118126] Cowger W, Gray A, Christiansen SH, DeFrond H, Deshpande AD, Hemabessiere L, Lee E, Mill 
L, Munno K, Ossmann BE, Pittroff M, Rochman C, Sarau G, Tarby S, Primpke S, 2020. Critical Review 
of Processing and Classification Techniques for Images and Spectra in Microplastic Research. Appl 
Spectrosc 74, 989–1010. https://doi.org/10.1177/0003702820929064  

[119127] Sefiloglu FÖ, Brits M, König Kardgar A, van Velzen MJM, Kaldenbach E, Vethaak AD, Doyle 
D, Carney Almroth B, Lamoree MH, 2024. Quantitative analysis of microplastics in Nile tilapia from a 
recirculating aquaculture system using pyrolysis–gas chromatography–mass spectrometry. Environ 
Sci Eur 36, 172. https://doi.org/10.1186/s12302-024-00987-6 

[120] Belanger S, Barron M[900] Hickey GL, Craig P, Dyer S, Galay-Burgos M, Hamer M, 
Marshall S, Posthuma L, Raimondo S, Whitehouse P, 2017. Future needs and recommendations in 
PS, Luttik R, De Zwart D, 2012. On the developmentquantification of intertest variability in 
ecotoxicity data with application to species sensitivity distributions: Estimating toxicity thresholds 
for aquatic ecological communities and assessing impacts of chemical exposures. Integr Environ 
Assess Manag 13, 664–674. https://doi.org/10.1002/ieam.1841   

[121.] Yanagihara M, Hiki K, Iwasaki Y, 2022. Can Chemical Toxicity in Saltwater Be Predicted 
from Toxicity in Freshwater? A Comprehensive Evaluation Using Species Sensitivity Distributions. 
Environ Toxicol Chem 41, 2021–2027. https://doi.org/10.1002/etc.5354  

[122] Koelmans AA, Redondo-Hasselerharm PE, Nor NHM, de Ruijter VN, Mintenig SM, Kooi 
M, 2022. Risk assessment of microplastic particles. Nat Rev Mater 7, 138–152. 
https://doi.org/10.1038/s41578-021-00411-y  

[123] Cincinelli A, Martellini T, Guerranti C, Scopetani C, Chelazzi D, Giarrizzo T, 2019. A 
potpourri of microplastics in the sea surface and water column of the Mediterranean Sea. TrAC 
Trends Anal Chem 110, 321–326. https://doi.org/10.1016/j.trac.2018.10.026  

[124] Yan M, Wang L, Dai Y, Sun H, Liu C, 2021. Behavior of Microplastics in Inland Waters: 
Aggregation, Settlement, and Transport. Bull Environ Contam Toxicol 107, 700–709. 
https://doi.org/10.1007/s00128-020-03087-2  

[125] Lenz R, Enders K, Nielsen TG, 2016. Microplastic exposure studies should be 
environmentally realistic. Proc Natl Acad Sci 113, E4121–E4122. 
https://doi.org/10.1073/pnas.1606615113  

[126] Thomas A, Marchand J, Schwoerer GD, Minor EC, Maurer-Jones MA, 2024. Size 
Distributions of Microplastics in the St Louis Estuary and Western Lake Superior. Environ Sci Technol 
58, 8480–8489. https://doi.org/10.1021/acs.est.3c10776  

Jo
ur

na
l P

re
-p

ro
of

https://doi.org/10.1186/s12302-024-00987-6


 

44 

[127] Clauset A, Shalizi CR, Newman MEJ, 2009. Power-Law Distributions in Empirical Data. 
SIAM Rev 51, 661–703. https://doi.org/10.1137/070710111  

[128] Takeshita KM, Iwasaki Y, Sinclair TM, Hayashi TI, Naito W, 2022. Illustrating a Species 
Sensitivity Distribution for Nano- and Microplastic Particles Using Bayesian Hierarchical Modeling. 
Environmental Toxicology and Chemistry 41, 954–960.31, 1903–1910. 
https://doi.org/10.1002/etc.52951891 

 

Declaration of Competing Interest 
Scott Coffin reports a relationship with The Moore Institute for Plastic Pollution Research that includes: 

board membership. The following authors have nothing to declare: Luan de Souza Leite, Win Cowger, 

Lidwina Bertrand, Kazi Towsif Ahmed, Andrew Yeh, Mariella Siña,Stephanie Kennedy, Bethanie Carney 

Almroth, Ezra Miller, Anna Kukkola, Andrew Barrick, Magdalena Mair 

 

Environmental Implication 
This study introduces a novel probabilistic framework that propagates uncertainty across particle- and 

species-specific alignments, toxicity mechanisms, and environmental compartments to derive 

ecologically relevant hazard thresholds for microplastics. By integrating mechanistic endpoints and 

Monte Carlo simulations at every stage of data harmonization, the approach provides a more 

transparent and robust foundation for ecological risk assessment, with resulting thresholds being more 

protective and realistic. The accompanying sensitivity analysis reveals which parameters contribute most 

to uncertainty, highlighting key knowledge gaps and guiding future research priorities for more targeted 

data generation and risk refinement. 
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Highlights 
• Novel probabilistic ERA framework (PSSD++) for microplastics thresholds 

• Integrated Monte Carlo uncertainty propagation into ERM alignments 

• Applied framework to ToMEx 2.0, the largest MP toxicity database 

• PSSD++ yields more precautionary but more uncertain thresholds 

• ERM choice dominates threshold uncertainty across environment 
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